Hirofumi Koyama

Learn More
Wnt5a regulates multiple intracellular signalling cascades, but how Wnt5a determines the specificity of these pathways is not well understood. This study examined whether the internalization of Wnt receptors affects the ability of Wnt5a to regulate its signalling pathways. Wnt5a activated Rac in the beta-catenin-independent pathway, and Frizzled2 (Fz2) and(More)
Werner syndrome (WS) is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells(More)
SUMO proteases possess two enzymatic activities to hydrolyze the C-terminal region of SUMOs (hydrolase activity) and to remove SUMO from SUMO-conjugated substrates (isopeptidase activity). SUMO proteases bind to SUMOs noncovalently, but the physiological roles of the binding in the functions of SUMO proteases are not well understood. In this study we found(More)
Oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD) enzymes play a major role in the antioxidant system and they also catalyze superoxide radicals (O2·-). Since the loss of cytoplasmic SOD (SOD1) resulted in aging-like phenotypes in several types of mouse tissue, SOD1 is essential for the(More)
L-Phenylalanine oxidase from Pseudomonas sp. P-501 has been purified to homogeneity as judged by acrylamide gel electrophoresis and ultracentrifugation. The enzyme produced both beta-phenylpyruvate and alpha-phenylacetamide from L-phenylalanine. Balance studies demonstrated that consumption of 1 mol each of L-phenylalanine and oxygen resulted in the(More)
L-Phenylalanine oxidase, purified to homogeneity from Pseudomonas sp. P-501, had a molecular weight of about 140,000 and consisted of two subunits identical in molecular weight (about 68,000). The sedimentation coefficient (S020,w) of the enzyme was determined to be 8.18S by ultracentrifugation. The enzyme showed absorption maxima at 276, 390, and 466 nm(More)
Redox imbalance elevates the reactive oxygen species (ROS) level in cells and promotes age-related diseases. Superoxide dismutases (SODs) are antioxidative enzymes that catalyze the degradation of ROS. There are three SOD isoforms: SOD1/CuZn-SOD, SOD2/Mn-SOD, and SOD3/EC-SOD. SOD2, which is localized in the mitochondria, is an essential enzyme required for(More)
A number of L-amino acids and derivatives were tested as substrates for the purified Pseudomonas L-phenylalanine oxidase. The reaction products of these amino acids were analyzed by high performance liquid chromatography and the kinetic properties of the reactions were partially characterized. In addition to L-phenylalanine, L-tyrosine, DL-o-tyrosine,(More)
Wnt5a, which regulates various cellular functions in Wnt signaling, is involved in inflammatory responses, however the mechanism is not well understood. We examined the role of Wnt5a signaling in intestinal immunity using conditional knockout mice for Wnt5a and its receptor Ror2. Removing Wnt5a or Ror2 in adult mice suppressed dextran sodium sulfate(More)
The essential Nps1p/Sth1p is a catalytic subunit of the nucleosome-remodeling complex, RSC, of Saccharomyces cerevisiae that can alter nucleosome structure by using the energy of ATP hydrolysis. Besides the ATPase domain, Nps1p harbors the bromodomain, of which the function(s) have not yet been defined. We have isolated a temperature-sensitive mutant allele(More)