Learn More
In Erwinia carotovora subspecies, N-acyl homoserine lactone (AHL) controls the expression of various traits, including extracellular enzyme/protein production and pathogenicity. We report here that E. carotovora subspecies possess two classes of quorum-sensing signaling systems defined by the nature of the major AHL analog produced as well as structural and(More)
N-acyl homoserine lactone (AHL) is required by Erwinia carotovora subspecies for the expression of various traits, including extracellular enzyme and protein production and pathogenicity. Previous studies with E. carotovora subsp. carotovora have shown that AHL deficiency causes the production of high levels of RsmA, an RNA binding protein that functions as(More)
Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a(More)
Pseudomonas syringae pv. tomato strain DC3000, a pathogen of tomato and Arabidopsis, occurs as an epiphyte. It produces N-acyl homoserine lactones (AHLs) which apparently function as quorum-sensing signals. A Tn5 insertion mutant of DC3000, designated PsrA(-) (Psr is for Pseudomonas sigma regulator), overexpresses psyR (a LuxR-type regulator of psyI) and(More)
The N-acylhomoserine lactone (AHL) signaling system comprises a producing system that includes acylhomoserine synthase (AhlI, a LuxI homolog) and a receptor, generally a LuxR homolog. AHL controls exoprotein production in Erwinia carotovora and consequently the virulence for plants. In previous studies we showed that ExpR, a LuxR homolog, is an AHL receptor(More)
During 2006 and 2007, we documented the re-emergence of severe episodes of vibriosis caused by Vibrio tubiashii in shellfish hatcheries on the west coast of North America. Lost larval and juvenile production included 3 previously undescribed hosts, Pacific (Crassostrea gigas) and Kumamoto (C. sikamea) oysters and geoduck clams Panope abrupta, with a 2007(More)
Vibrio tubiashii, a pathogen of shellfish larvae and juveniles, produces several extracellular products. Here, we document that culture supernatants of several marine Vibrio species showed toxicity to oyster larvae. Treatment of these supernatants with EDTA not only severely diminished proteolytic activities, but also dramatically reduced toxicity to the(More)
Vibrio tubiashii, a causative agent of severe shellfish larval disease, produces multiple extracellular proteins, including a metalloprotease (VtpA), as potential virulence factors. We previously reported that VtpA is toxic for Pacific oyster (Crassostrea gigas) larvae. In this study, we show that extracellular protease production by V. tubiashii was much(More)
To achieve the skillful task like the human, many researchers have been working on robot hand. An interaction with vision and tactile information are indispensable for realization of skillful tasks. In the existing research, the method using a camera to get the vision information is often found. But, in the boundary area of a non-contact phase and a contact(More)
Vibrio tubiashii is a re-emerging pathogen of molluscs that secretes a variety of extracellular products (ECPs), including a metalloprotease and a cytolysin/haemolysin. Previously, we reported that the V. tubiashii haemolysin locus consists of two ORFs (vthB and vthA), similar to that of the homologous haemolysin genes (vvhB and vvhA) found in Vibrio(More)