Learn More
MOTIVATION Biclustering of transcriptomic data groups genes and samples simultaneously. It is emerging as a standard tool for extracting knowledge from gene expression measurements. We propose a novel generative approach for biclustering called 'FABIA: Factor Analysis for Bicluster Acquisition'. FABIA is based on a multiplicative model, which accounts for(More)
This article describes three multivariate projection methods and compares them for their ability to identify clusters of biological samples and genes using real-life data on gene expression levels of leukemia patients. It is shown that principal component analysis (PCA) has the disadvantage that the resulting principal factors are not very informative,(More)
The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06(More)
MOTIVATION DNA microarray technology typically generates many measurements of which only a relatively small subset is informative for the interpretation of the experiment. To avoid false positive results, it is therefore critical to select the informative genes from the large noisy data before the actual analysis. Most currently available filtering(More)
Bedaquiline (BDQ), an ATP synthase inhibitor, is the first drug to be approved for treatment of multidrug-resistant tuberculosis in decades. Though BDQ has shown excellent efficacy in clinical trials, its early bactericidal activity during the first week of chemotherapy is minimal. Here, using microfluidic devices and time-lapse microscopy of Mycobacterium(More)
Dose-response studies are commonly used in experiments in pharmaceutical research in order to investigate the dependence of the response on dose, i.e., a trend of the response level toxicity with respect to dose. In this paper we focus on dose-response experiments within a microarray setting in which several microarrays are available for a sequence of(More)
Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many(More)
One of multiple testing problems in drug finding experiments is the comparison of several treatments with one control. In this paper we discuss a particular situation of such an experiment, i.e., a microarray setting, where the many-to-one comparisons need to be addressed for thousands of genes simultaneously. For a gene-specific analysis, Dunnett's single(More)
Probe-level data from Affymetrix GeneChips can be summarized in many ways to produce probe-set level gene expression measures (GEMs). Disturbingly, the different approaches not only generate quite different measures but they could also yield very different analysis results. Here, we explore the question of how much the analysis results really do differ,(More)