Hink B. Perdok

Learn More
Twenty male crossbred Texel lambs were used in a 2 × 2 factorial design experiment to assess the effect of dietary addition of nitrate (2.6% of dry matter) and sulfate (2.6% of dry matter) on enteric methane emissions, rumen volatile fatty acid concentrations, rumen microbial composition, and the occurrence of methemoglobinemia. Lambs were gradually(More)
Feeding nitrate to dairy cows may lower ruminal methane production by competing for reducing equivalents with methanogenesis. Twenty lactating Holstein-Friesian dairy cows (33.2±6.0 kg of milk/d; 104±58 d in milk at the start of the experiment) were fed a total mixed ration (corn silage-based; forage to concentrate ratio 66:34), containing either a dietary(More)
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary(More)
The objective of this study was to determine the effect of dietary nitrate on methane emission and rumen fermentation parameters in Nellore × Guzera (Bos indicus) beef cattle fed a sugarcane based diet. The experiment was conducted with 16 steers weighing 283 ± 49 kg (mean ± SD), 6 rumen cannulated and 10 intact steers, in a cross-over design. The animals(More)
30 There is a need to develop simple ways of quantifying and estimating methane 31 production in cattle. Our aim was to evaluate the relationship between methane 32 production and milk fatty acid (FA) profile in order to use milk FA profiles to predict 33 methane production in dairy cattle. Data from three experiments with dairy cattle with 34 a total of 10(More)
Two similar experiments were conducted to assess the effect of diallyl disulfide (DADS), yucca powder (YP), calcium fumarate (CAFU), an extruded linseed product (UNSAT), or a mixture of capric and caprylic acid (MCFA) on methane production, energy balance, and dairy cow performance. In experiment 1, a control diet (CON1) and diets supplemented with 56 mg of(More)
Two experiments were conducted to study effects of dietary nitrate on enteric methane production, blood methemoglobin concentration, and growth rate in cattle. In Exp. 1, 36 Holstein steers (288 ± 25 kg BW) were fed increasing levels of dietary nitrate (6 levels; 0 to 3.0% of feed DM) in corn silage-based total mixed rations. Nitrate was introduced(More)
Intestinal barrier function in pigs after weaning is almost exclusively determined in terminal experiments with Ussing chambers. Alternatively, the recovery in urine of orally administered lactulose can be used to assess intestinal permeability in living animals. This experiment was designed to study the barrier function of the small intestine of pigs over(More)
Two experiments were conducted to assess the effects of a mixture of dietary additives on enteric methane production, rumen fermentation, diet digestibility, energy balance, and animal performance in lactating dairy cows. Identical diets were fed in both experiments. The mixture of feed additives investigated contained lauric acid, myristic acid, linseed(More)
Nitrate supplementation has been shown to be effective in reducing enteric methane emission from ruminants, but there have been few large-scale studies assessing the effects of level of nitrate supplementation on feed intake, animal growth, or carcass and meat quality attributes of beef cattle. A feedlot study was conducted to assess the effects of(More)
  • 1