Learn More
Optical trapping (tweezing) has been used in conjunction with fluid flow technology to dissect the mechanics and spatio-temporal dynamics of how neural progenitor/stem cells (NSCs) adhere and aggregate. Hitherto unavailable information has been obtained on the most probable minimum time (∼5 s) and most probable minimum distance of approach (4-6 µm) required(More)
Malaria parasites reside inside erythrocytes and the disease manifestations are linked to the growth inside infected erythrocytes (IE). The growth of the parasite is mostly confined to the trophozoite stage during which nuclear division occurs followed by the formation of cell bodies (schizogony). The mechanism and regulation of schizogony are poorly(More)
The birefringence of a red blood cell (RBC) is quantitatively monitored as it becomes infected by a malarial parasite. Large changes occur in the cell's refractive index at different stages of malarial infection. The observed rotation of an optically trapped, malaria-infected RBC is not a simple function of shape distortion: the malarial parasite is found(More)
INTRODUCTION Optical trapping is a laser-based method for probing the physiological and mechanical properties of cells in a noninvasive manner. As sperm motility is an important criterion for assessing the male fertility potential, this technique is used to study sperm cell motility behavior and rotational dynamics. METHODS AND PATIENTS An integrated(More)
We investigate the physics of an optically trapped red blood cell under physiological conditions. When a single, live red blood cell, is placed in an optical trap, the normal biconcave disk shaped cell is observed to undergo a folding action and thereby take up a rod like shape. If such an RBC has any shape anisotropies due to perturbation through malarial(More)
  • 1