Himadri Shekhar Mandal

Learn More
OBJECTIVE This study compares the stability of three variations of the conductive polymer poly(3,4-ethylenedioxythiophene) or PEDOT for neural micro-stimulation under both in vitro and in vivo conditions. We examined PEDOT films deposited with counter-ions tetrafluoroborate (TFB) and poly(styrenesulfonate) (PSS), and PEDOT PSS combined with carbon(More)
Research on the toxicity of carbon nanotubes has focused on human health risks, and little is known about their impact on natural ecosystems. The ciliated protozoan Tetrahymena thermophila has been widely studied by ecotoxicologists because of its role in the regulation of microbial populations through the ingestion and digestion of bacteria, and because it(More)
Conducting polymers, especially poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, are important for developing highly sensitive and microscale neural probes. In the present work, we show that the conductivity and stability of PEDOT can be significantly increased by switching the widely used counter anion poly(styrenesulfonate) (PSS) to the smaller(More)
This study describes the electron transfer (ET) phenomenon through a series of (Pro-Hyp-Gly) repeat units containing collagen mimics. The peptides contain redox-active ferrocene (Fc) and thiol-functionalized cystein (Cys) at the N- and C-terminals, respectively. Peptide films were prepared on gold surfaces and characterized by X-ray photoelectron(More)
Current signals produced by the laser-illumination of bare and non-chromophore containing peptide modified gold electrodes were investigated, and we suggest that these current signals which are due to the interfacial potential drop induced by laser heating, may have been mistakenly assigned to molecular-based photocurrents in several recent publications.
Here, we report the label-free, sensitive, and real-time electrical detection of whole viruses using carbon nanotube thin film (CNT-TF) field effect devices. Selective detection of approximately 550 model viruses, M13-bacteriophage, is demonstrated using a simple two-terminal (no gate electrode) configuration. Chemical gating through specific antibody-virus(More)
The ingestion and digestion of Escherichia coli by the ciliated protozoan, Tetrahymena thermophila, was investigated after an initial exposure to either water-soluble single-walled carbon nanotubes (SWNT) or to carbon black (CB). Both SWNT and CB were internalised and visible in food vacuoles of ciliates. When presented with E. coli expressing(More)
Self-assembled monolayers (SAMs) of ferrocene-labeled α-helical peptides were prepared on gold surfaces and studied using electrochemical surface plasmon resonance (EC-SPR). The leucine-rich peptides were synthesized with a cysteine sulfhydryl group either at the C- or N-terminus, enabling their immobilization onto gold surfaces with control of the(More)
We describe here a simple and low-cost method to prepare ultra-thin, homogeneous, and transferable films of pristine carbon nanotubes (CNTs). The highly efficient chemical vapor deposition (CVD) growth method involves silica supported catalysts and alcohol vapor as gaseous carbon source. By varying the amount of catalysts, the thickness of synthesized films(More)