Hilde Vernieuwe

Learn More
In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on(More)
Radar remote sensing has shown its potential for retrieving soil moisture from bare soil surfaces. Since the backscattering process is also determined by the soil roughness , the characterisation of the roughness is crucial for an accurate soil moisture retrieval. However, several field experiments have shown a large variability of the roughness parameters.(More)
—Soil roughness plays an essential role in the reflection of the incoming radar signal at the soil surface and is, therefore, highly important in the retrieval of the soil moisture information from the backscattered radar signal. However, soil roughness, generally described by means of the root mean square (rms) height and the correlation length, remains(More)
Operational flood mitigation and flood modeling activities benefit from a rapid and automated flood mapping procedure. A valuable information source for such a flood mapping procedure can be remote sensing synthetic aperture radar (SAR) data. In order to be reliable, an objective characterization of the uncertainty associated with the flood maps is(More)
Tsetse-transmitted human or livestock trypanosomiasis is one of the major constraints to rural development in sub-Saharan Africa. The epidemiology of the disease is determined largely by tsetse fly density. A major factor, contributing to tsetse population density is the availability of suitable habitat. In large parts of Africa, encroachment of people and(More)