Learn More
Infection of vertebrate hosts with pathogenic Mycobacteria, the agents of tuberculosis, produces granulomas, highly organized structures containing differentiated macrophages and lymphocytes, that sequester the pathogen. Adult zebrafish are naturally susceptible to tuberculosis caused by Mycobacterium marinum. Here, we exploit the optical transparency of(More)
Granulomas are organized host immune structures composed of tightly interposed macrophages and other cells that form in response to a variety of persistent stimuli, both infectious and noninfectious. The tuberculous granuloma is essential for host containment of mycobacterial infection, although it does not always eradicate it. Therefore, it is considered a(More)
Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated(More)
In tuberculosis, infecting mycobacteria are phagocytosed by macrophages, which then migrate into deeper tissue and recruit additional cells to form the granulomas that eventually contain infection. Mycobacteria are exquisitely adapted macrophage pathogens, and observations in the mouse model of tuberculosis have suggested that mycobacterial growth is not(More)
One of the strengths of the zebrafish is the ease with which in situ hybridization can be performed to determine spatial and temporal patterns of gene expression in whole embryos. Thus far, colorimetric detection methods are mainly used for these analyses. Here we describe a fluorescent in situ hybridization (FISH) protocol for whole-mount zebrafish embryos(More)
  • 1