Learn More
Human genomic data of many types are readily available, but the complexity and scale of human molecular biology make it difficult to integrate this body of data, understand it from a systems level, and apply it to the study of specific pathways or genetic disorders. An investigator could best explore a particular protein, pathway, or disease if given a(More)
Cellular quiescence, defined as reversible growth/proliferation arrest, is thought to represent a homogenous state induced by diverse anti-mitogenic signals. We used transcriptional profiling to characterize human diploid fibroblasts that exited the cell cycle after exposure to three independent signals--mitogen withdrawal, contact inhibition, and loss of(More)
Viral replication requires energy and macromolecular precursors derived from the metabolic network of the host cell. Despite this reliance, the effect of viral infection on host cell metabolic composition remains poorly understood. Here we applied liquid chromatography-tandem mass spectrometry to measure the levels of 63 different intracellular metabolites(More)
BACKGROUND The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial(More)
  • Johanna M. S. Lemons, Xiao-Jiang Feng, Bryson D. Bennett, Aster Legesse-Miller, Elizabeth L. Johnson, Irene Raitman +4 others
  • 2010
Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that(More)
MOTIVATION Much of a cell's regulatory response to changing environments occurs at the transcriptional level. Particularly in higher organisms, transcription factors (TFs), microRNAs and epigenetic modifications can combine to form a complex regulatory network. Part of this system can be modeled as a collection of regulatory modules: co-regulated genes, the(More)
The recent revelation that there are small, noncoding RNAs that regulate the expression of many other genes has led to an exciting, emerging body of literature defining the biological role for these molecules within signaling networks. In a flurry of recent papers, a microRNA polycistron induced by the oncogenic transcription factor c-myc has been found to(More)
Changes in microRNA expression have been linked to a wide array of pathological states. However, little is known about the regulation of microRNA expression. The let-7 microRNA is a tumor suppressor that inhibits cellular proliferation and promotes differentiation, and is frequently lost in tumors. We investigated the transcriptional regulation of two let-7(More)
Transcript degradation is a widespread and important mechanism for regulating protein abundance. Two major regulators of transcript degradation are RNA Binding Proteins (RBPs) and microRNAs (miRNAs). We computationally explored whether RBPs and miRNAs cooperate to promote transcript decay. We defined five RBP motifs based on the evolutionary conservation of(More)
BACKGROUND Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite(More)