Hikaru Ishihara

Learn More
AIMS/HYPOTHESIS Glutamate dehydrogenase (GDH) is a mitochondrial enzyme playing a key role in the control of insulin secretion. However, it is not known whether GDH expression levels in beta cells are rate-limiting for the secretory response to glucose. GDH also controls glutamine and glutamate oxidative metabolism, which is only weak in islets if GDH is(More)
To explore the relationship between structure and function in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, we studied Xenopus CFTR. We found that the anion permeability sequence of cAMP-activated Cl- currents in the apical membrane of Xenopus A6 epithelia differed from that of cAMP-activated Cl- currents in human epithelia(More)
ATP hydrolysis by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel predicts that energy from hydrolysis might cause asymmetric transitions in the gating cycle. We found that 3-(N-morpholino)propanesulfonic acid (MOPS) blocked the open channel by binding to a site 50% of the way through the electrical field. Block by MOPS revealed(More)
Mitochondrial metabolism plays a pivotal role in the pancreatic beta cell by generating signals that couple glucose sensing to insulin secretion. We have demonstrated previously that mitochondrially derived glutamate participates directly in the stimulation of insulin exocytosis. The aim of the present study was to impose altered cellular glutamate levels(More)
The performance of a robot can be enhanced by increasing its output. However, increasing the output of rigid actuators such as motors and hydraulic actuators will likely increase the weight of the robot. Conversely, organisms such as human beings achieve high output within a short time by accumulating and releasing the elastic energy stored in their muscles(More)
  • 1