Hieu Trung Huynh

Learn More
Recently, a novel learning algorithm called extreme learning machine (ELM) was proposed for efficiently training single-hidden-layer feedforward neural networks (SLFNs). It was much faster than the traditional gradient-descent-based learning algorithms due to the analytical determination of output weights with the random choice of input weights and hidden(More)
Neural networks have been massively used in regression problems due to their ability to approximate complex nonlinear mappings directly from input patterns. However, collected data for training networks often include outliers which affect final results. This paper presents an approach for training single hidden-layer feedforward neural networks (SLFNs)(More)
Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image(More)