Learn More
The terminal t-loop structure adopted by mammalian telomeres is thought to prevent telomeres from being recognized as double-stranded DNA breaks by sequestering the 3' single-stranded G-rich overhang from exposure to the DNA damage machinery. The POT1 (protection of telomeres) protein binds the single-stranded overhang and is required for both chromosomal(More)
UV-sensitive syndrome (UV(S)S) is an autosomal recessive disorder characterized by photosensitivity and deficiency in transcription-coupled repair (TCR), a subpathway of nucleotide-excision repair that rapidly removes transcription-blocking DNA damage. Cockayne syndrome is a related disorder with defective TCR and consists of two complementation groups,(More)
The ATM- and Rad3-related (ATR) kinase is a master regulator of the DNA damage response, yet how ATR is activated toward different substrates is still poorly understood. Here, we show that ATR phosphorylates Chk1 and RPA32 through distinct mechanisms at replication-associated DNA double-stranded breaks (DSBs). In contrast to the rapid phosphorylation of(More)
Cellular senescence acts as a barrier to cancer progression, and microRNAs (miRNAs) are thought to be potential senescence regulators. However, whether senescence-associated miRNAs (SA-miRNAs) contribute to tumor suppression remains unknown. Here, we report that miR-22, a novel SA-miRNA, has an impact on tumorigenesis. miR-22 is up-regulated in human(More)
Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction(More)
Inhibition of telomerase activity by telomerase inhibitors induces a gradual loss of telomeres, and this in turn causes cancer cells to enter to a crisis stage. Here, we report the telomerase inhibitor telomestatin, which is known to stabilize G-quadruplex structures at 3' single-stranded telomeric overhangs (G-tails), rapidly dissociates TRF2 from(More)
Epstein-Barr virus (EBV) is closely associated with the generation of various tumors, including Burkitt's lymphoma. Human resting B cells from peripheral blood are easily transformed by EBV to actively proliferating B-lymphoblastoid cell lines (LCLs). These LCLs with normal diploid karyotypes have been believed to be "immortal", without becoming(More)
POT1 (protection of telomere 1) is a highly conserved single-stranded telomeric binding protein that is essential for telomere end protection. Here, we report the cloning and characterization of a second member of the mouse POT family. POT1b binds telomeric DNA via conserved DNA binding oligonucleotide/oligosaccharide (OB) folds. Compared to POT1a, POT1b(More)
Chromosome aberrations such as loss of chromosome 13 were frequently observed in human endothelial cells from umbilical cord veins (HUVEC). A recent study showed that the length of telomeric single-stranded 3'-overhangs (G-tails) is more important as an essential structure for chromosome maintenance than the net telomere length in telomere t-loop formation.(More)
To examine the association of cell cycle regulatory gene inactivation with human cell immortalization, we determined the expression status of INK4a, Rb, and WAF1/ CIP1, in eleven in vitro immortalized human cell lines, including fibroblasts and keratinocytes. Two human papillomavirus type 16 E6 expressing cell lines with telomerase activity, including a(More)