Learn More
Cerebral vascular mean transit time (MTT), defined as the ratio of cerebral blood volume to cerebral blood flow (CBV/CBF), is a valuable indicator of the cerebral circulation. Positron emission tomography (PET) and dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) are useful for the quantitative determination of MTT in the(More)
Cerebral blood flow (CBF) and vascular mean transit time (MTT) can be determined by dynamic susceptibility contrast-enhanced magnetic resonance imaging and deconvolution with an arterial input function. However, deconvolution by a singular value decomposition (SVD) method is sensitive to the tracer delay that often occurs in patients with cerebrovascular(More)
We report preliminary results applying fluid-attenuated inversion-recovery (FLAIR) sequences to three patients with acute subarachnoid hemorrhage. Acute subarachnoid hemorrhage could be clearly demonstrated as areas of high signal intensity on FLAIR sequences in all patients. These preliminary results suggest that with FLAIR sequences one could reliably(More)
Volume expansion associated with brain infarction occurs in perfusion-diffusion mismatch of magnetic resonance imaging. We aimed at elucidating the metabolic impairment of this phenomenon with (15)O positron emission tomography and perfusion and diffusion magnetic resonance imaging. Eleven patients with acute unilateral embolic occlusion of the internal(More)
PURPOSE Deconvolution based on truncated singular value decomposition (SVD deconvolution) is a promising method for measuring cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), but it has proved extremely sensitive to tracer delay. The purpose of this study was to investigate the effect of regional(More)
We performed an estimation of longitudinal (T1) and transverse relaxation (T2) time using the general-purpose spreadsheet software Microsoft Excel. The Excel tool "solver" is useful for the simultaneous estimation of both T1 and steady-state magnetization from the non-linear least square method. The estimation time is quick enough for the purpose. T1 and T2(More)
The volume of the temporal horn of the lateral ventricle (THLV) on brain computed tomography (CT) images is important for neurologic diagnosis. Our purpose in this study was to develop a z-score-based semi-quantitative analysis for estimation of the THLV volume by using voxel-based morphometry. The THLV volume was estimated by use of a z-score mapping(More)
  • 1