Hideto Tamagake

Learn More
It has been reported that glycinebetaine (betaine) is synthesized in response to abiotic stresses via a two-step oxidation of choline in which choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) are involved. Here we show that significant amounts of betaine, > 20 micromol/gFW, accumulated in young leaves of Beta vulgaris even under normal(More)
Male gametogenesis in plants can be impaired by an incompatibility between nuclear and mitochondrial genomes, termed cytoplasmic male sterility (CMS). A sterilizing factor resides in mitochondria, whereas a nuclear factor, Restorer-of-fertility (Rf), restores male fertility. Although a majority of plant Rf genes are thought to encode a family of RNA-binding(More)
After a cell wall protein fraction (CWP) of Pythium oligandrum was sprayed on sugar beet leaves, we screened leaves for induced expression of defence-related genes and for resistance against Cercospora leaf spot. In a western blot analysis, the CWP was primarily retained on the surface of leaves without degradation for at least 48 h after spraying. In(More)
Glycine betaine (GB) is an important osmoprotectant and synthesized by two-step oxidation of choline. Choline monooxygenase (CMO) catalyzes the first step of the pathway and is believed to be a rate limiting step for GB synthesis. Recent studies have shown the importance of choline-precursor supply for GB synthesis. In order to investigate the role of CMO(More)
Creating transgenic plants is invaluable for the genetic analysis of sugar beet and will be increasingly important as sugar beet genomic technologies progress. A protocol for Agrobacterium-mediated transformation of sugar beet is described in this chapter. Our protocol is optimized for a sugar beet genotype that performs exceptionally well in tissue(More)
Levan, a type of fructan, is an oligomer or polymer with mainly a β(2,6)-linked fructose chain attached to sucrose. We introduced two timothy genes, PpFT1 and PpFT2, coding for two homologous sucrose:fructan 6-fructosyltransferases into sugar beet. Sugar beet produces a high concentration of sucrose, a starting substrate in fructan synthesis, in the root.(More)
BACKGROUND Obtaining dedifferentiated cells (callus) that can regenerate into whole plants is not always feasible for many plant species. Sugar beet is known to be recalcitrant for dedifferentiation and plant regeneration. These difficulties were major obstacles for obtaining transgenic sugar beets through an Agrobacterium-mediated transformation procedure.(More)
  • 1