Learn More
To construct a mammalian artificial chromosome (MAC), telomere repeats and selectable markers were introduced into a 100 kb yeast artificial chromosome (YAC) containing human centromeric DNA. This YAC, which has a regular repeat structure of alpha-satellite DNA and centromere protein B (CENP-B) boxes, efficiently formed MACs that segregated accurately and(More)
The mode of cytokinesis, especially in determining the site of cell division, is not well understood in higher-plant cells. The division site appears to be predicted by the preprophase band of microtubules that develop with the phragmosome, an intracellular structure of the cytoplasm suspending the nucleus and the mitotic apparatus in the center. As the(More)
We developed an enhanced green-emitting luciferase (ELuc) to be used as a bioluminescence imaging (BLI) probe. ELuc exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc), which is the most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells(More)
The nucleotide sequence of C4 RNA, one of the "4.5S RNAs" of HeLa cells, was determined. This RNA consists of 90 nucleotides containing C-C-A at its 3'-terminus. The sequence can be drawn to form a clover-leaf structure with several unusual features and with anticodon NCA. The short term labeled molecule contains triphosphates at its 5'-terminus, whereas(More)
Heme oxygenase-1 (HO-1) protects cells from various insults including oxidative stress. Transcriptional activators, including the Nrf2/Maf heterodimer, have been the focus of studies on the inducible expression of ho-1. Here we show that a heme-binding factor, Bach1, is a critical physiological repressor of ho-1. Bach1 bound to the multiple Maf recognition(More)
Several lines of evidence suggest that gene expression is regulated not only by the interaction between transcription factors and DNA but also by the higher-order architecture of the cell nucleus. PML bodies are one of the most prominent nuclear substructures which have been implicated in transcription regulation during apoptosis and stress responses. Bach2(More)
Activated B cells differentiate to plasma cells to secrete IgM or, after undergoing class switch recombination (CSR), to secrete other classes of immunoglobulins. Diversification of antibody function by CSR is important for humoral immunity. However, it remains unclear how the decision for the bifurcation is made. Bach2 is a B-cell-specific transcription(More)
Uninfected mouse kidney cells and mouse leukemia cells L1210 in cluture contained a series of 4.5S RNAs which was structurally identical to the series of 4.5S RNAs associated with genomic RNAs of murine retroviruses and poly(A)-containing RNAs from virus infected cells. Normal rat kidney cells and baby hamster kidney cells in culture also contained a series(More)
Taking advantage of the phenomenon of bioluminescence resonance energy transfer (BRET), we developed a bioluminescent probe composed of EYFP and Renilla reniformis luciferase (RLuc)--BRET-based autoilluminated fluorescent protein on EYFP (BAF-Y)--for near-real-time single-cell imaging. We show that BAF-Y exhibits enhanced RLuc luminescence intensity and(More)
Bach2 is a member of the BTB-basic region leucine zipper factor family and represses transcription activity directed by the TPA response element, the Maf recognition element (MARE) and the antioxidant-responsive element. Recently, it was reported that upon oxidative stress Bach2 forms nuclear foci surrounding the promyelocytic leukaemia (PML) bodies and(More)