Learn More
Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular(More)
It is often assumed that it is not possible to alter the properties of magnetic materials once they have been prepared and put into use. For example, although magnetic materials are used in information technology to store trillions of bits (in the form of magnetization directions established by applying external magnetic fields), the properties of the(More)
The magnetization of a magnetic material can be reversed by using electric currents that transport spin angular momentum. In the reciprocal process a changing magnetization orientation produces currents that transport spin angular momentum. Understanding how these processes occur reveals the intricate connection between magnetization and spin transport, and(More)
Nonvolatile logic-in-memory architecture, where nonvolatile memory elements are distributed over a logic-circuit plane, is expected to realize both ultra-low-power and reduced interconnection delay. This paper presents novel nonvolatile logic circuits based on logic-in-memory architecture using magnetic tunnel junctions (MTJs) in combination with MOS(More)