Learn More
Transcription of genes encoding molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) is induced by accumulation of unfolded proteins in the ER. This intracellular signaling, known as the unfolded protein response (UPR), is mediated by the cis-acting ER stress response element (ERSE) in mammals. In addition to ER chaperones, the(More)
When unfolded proteins accumulate in the endoplasmic reticulum (ER), transcription of glucose-regulated proteins (GRPs) representing ER-resident molecular chaperones is markedly induced via the unfolded protein response (UPR) pathway. In contrast to recent progress in the analysis of yeast UPR, both cis-acting elements and transactivators responsible for(More)
BACKGROUND Accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the transcriptional induction of molecular chaperones and folding enzymes localized in the ER. Thus, eukaryotic cells possess an intracellular signalling pathway from the ER to the nucleus, called the unfolded protein-response (UPR) pathway. In Saccharomyces cerevisiae,(More)
Plasmids that can be used for controlled expression of the DnaK-DnaJ-GrpE and/or GroEL-GroES chaperone team were constructed in order to facilitate assessment of the effects of these chaperone teams on folding or assembly or recombinant proteins in Escherichia coli. A typical pACYC184-based plasmid which was obtained could express the major DnaK-DnaJ-GrpE(More)
An intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, called the unfolded protein response (UPR), is activated when unfolded proteins are accumulated in the ER under a variety of stress conditions ("ER stress"). We and others recently identified Hac1p/Ern4p as a transcription factor responsible for the UPR in Saccharomyces(More)
BACKGROUND Susceptibility to the development of asthma and other atopic diseases is known to be associated with genetic components. Several investigator have linked the interleukin-4 (IL-4) gene and nearby markers located on chromosome 5 to atopy and asthma. Recent study has demonstrated that the T allele of a polymorphism in the IL-4 gene promoter region(More)
Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR) according to the needs within the ER. In Saccharomyces cerevisiae, expression of the UPR-specific transcription factor Hac1p is tightly regulated at the level of(More)
As the most abundant cell type in the central nervous system, astrocytes are positioned to nurture and sustain neurons, especially in response to cellular stresses, which occur in ischemic cerebrovascular disease. In a previous study (Hori, O., Matsumoto, M., Kuwabara, K., Maeda, M., Ueda, H., Ohtsuki, T., Kinoshita, T., Ogawa, S., Kamada, T., and Stern, D.(More)
Production of abnormal proteins during steady-state growth induces the heat shock response by stabilizing normally unstable sigma32 (encoded by the rpoH gene) specifically required for transcription of heat shock genes. We report here that a multicopy plasmid carrying the hslVU operon encoding a novel ATP-dependent protease inhibits the heat shock response(More)
A series of events initiated by glutamate-receptor interaction perturbs cellular homeostasis resulting in elevation of intracellular free calcium and cell death. Cells subject to such environmental change express stress proteins, which contribute importantly to maintenance of metabolic homeostasis and viability. We show that an inducible chaperone present(More)