Learn More
We developed a quantitative PCR method featuring a reusable single-cell cDNA library immobilized on beads for measuring the expression of multiple genes in a single cell. We used this method to analyze multiple cDNA targets (from several copies to several hundred thousand copies) with an experimental error of 15.9% or less. This method is sufficiently(More)
Highly sensitive real-time pyrosequencing seems promising for constructing an inexpensive and small DNA sequencer with a low running cost. A DNA sample of a picomole level is usually used in the conventional pyrosequencing based on a luciferase assay coupled with an APS-ATP surfurylase reaction for producing ATP from pyrophosphate (PPi). Although the(More)
In pyrosequencing chemistry, four cascade enzymatic reactions with the catalysis of polymerase, adenosine triphosphate (ATP) sulfurylase, luciferase, and apyrase are employed. The sensitivity of pyrosequencing mainly depends on the concentration of luciferase which catalyzes a photoemission reaction. However, the side-reaction of adenosine 5' phosphosulfate(More)
Although the pyrosequencing method is simple and fast, the step of ssDNA preparation increases the cost, labor, and cross-contamination risk. In this paper, we proposed a method enabling pyrosequencing directly on dsDNA digested by nicking endonucleases (NEases). Recognition sequence of NEases was introduced using artificially mismatched bases in a PCR(More)
Most methods used for gene expression analysis are based on dye-labeling, which requires costly instruments. Recently a dye-free gene expression analysis method-SRPP (Sequence-tagged reverse-transcription polymerase chain reaction coupled with pyrosequencing) was developed to compare relative gene expression levels in different tissues, but the throughput(More)
The loop-mediated isothermal amplification (LAMP) is a well-developed method for replicating a targeted DNA sequence with a high specificity, but multiplex LAMP detection is difficult because LAMP amplicons are very complicated in structure. To allow simultaneous detection of multiple LAMP products, a series of target-specific barcodes were designed and(More)
The shade avoidance response, which allows plants to escape from nearby competitors, is triggered by a reduction in the PFR form of phytochrome in response to shade. Classic physiological experiments have demonstrated that the shade signal perceived by the leaves is transmitted to the other parts of the plant. Recently, a simple method was developed to(More)
There is a high demand for inexpensive and high-throughput DNA sequencing technologies in molecular biology and applied biosciences. In this study, novel nano-sized magnetic particles displaying enzymes for pyrosequencing, a rather novel bioluminometric DNA sequencing method based on the sequencing-by-synthesis principle by employing a cascade of several(More)
Conventional pyrosequencing using 2'-deoxyadenosine-5'-O-(1-thiotriphosphate) (dATPαS) is problematic due to the high cost of the substrate (dATPαS) and deterioration in the accuracy of incorporation to read through poly(T) regions. One reason for these problems is that dATPαS has a sulfur on the α-phosphate and also has isomers (Sp and Rp). To solve these(More)
A blood assay for detection of lung cancer biomarkers could significantly improve cancer patient prognosis and survival rates. Amplified fragment length polymorphism-differential display (AFLP-DD) was used to identify gene transcripts found in lung cancer tissue and the peripheral blood of lung cancer patients. The clones were evaluated for gene expression(More)