Learn More
Hepatic stellate cells (HSC) undergo transdifferentiation (activation) from lipid-storing pericytes to myofibroblastic cells to participate in liver fibrogenesis. Our recent work demonstrates that depletion of peroxisome proliferator-activated receptor gamma (PPARgamma) constitutes one of the key molecular events for HSC activation and that ectopic(More)
The present study examined the roles of peroxisome proliferator-activated receptors (PPAR) in activation of hepatic stellate cells (HSC), a pivotal event in liver fibrogenesis. RNase protection assay detected mRNA for PPARgamma1 but not that for the adipocyte-specific gamma2 isoform in HSC isolated from sham-operated rats, whereas the transcripts for(More)
The mechanisms that allow the body to sense iron levels in order to maintain iron homeostasis are unknown. Patients with the most common form of hereditary iron overload have mutations in the hereditary hemochromatosis protein HFE. They have lower levels of hepcidin than unaffected individuals. Hepcidin, a hepatic peptide hormone, negatively regulates iron(More)
To determine if alcoholic liver fibrogenesis is exacerbated by dietary iron supplementation, carbonyl iron (0.25% wt/vol) was intragastrically infused with or without ethanol to rats for 16 wk. Carbonyl iron had no effect on blood alcohol concentration, hepatic biochemical measurements, or liver histology in control animals. In both ethanol-fed and control(More)
BACKGROUND & AIMS Myofibroblast transdifferentiation generates hepatic myofibroblasts, which promote liver fibrogenesis. The peroxisome proliferator-activated receptor gamma (PPARgamma) is a negative regulator of this process. We investigated epigenetic regulation of PPARgamma and myofibroblast transdifferentiation. METHODS Chromatin immunoprecipitation(More)
Increased gut permeability (leaky gut) and endotoxin-mediated Kupffer cell activation are proposed as the mechanisms of alcoholic liver injury. Although ethanol feeding is shown to sensitize the liver for injury induced by parental administration of lipopolysaccharide (LPS), how enteral LPS loading affects alcoholic liver injury is yet to be tested. The(More)
3 The field of pancreatic stellate cell (PSC) biology is very young, as the essential in-vitro tools to study these cells (ie, methods to isolate and culture PSC) were only developed as recently as in 1998. Nonetheless , there has been an exponential increase in research output in this field over the past decade, with numerous research groups around the(More)
Depletion of peroxisome proliferator-activated receptor gamma (PPARgamma) accompanies myofibroblastic transdifferentiation of hepatic stellate cells (HSC), the primary cellular event underlying liver fibrogenesis. The treatment of activated HSC in vitro or in vivo with synthetic PPARgamma ligands suppresses the fibrogenic activity of HSC. However, it is(More)
Located within the perisinusoidal space and surrounded by extracellular matrix, hepatic stellate cells (HSC) undergo phenotypic trans-differentiation called "myofibroblastic activation" in liver fibrogenesis. This study investigated the regulation of interleukin-1 (IL-1alpha) on expression of matrix metalloproteinases (MMPs) by HSC grown in(More)
Stimulation of cell proliferation caused by peroxisome proliferators was blocked by antibodies against TNF alpha and agents that inactivate Kupffer cells, a rich source of TNF alpha, which supports the hypothesis that Kupffer cells play a pivotal role in peroxisome proliferator-induced hyperplasia. Here, the ability of the very potent peroxisome(More)