Hidekazu Tsukamoto

Learn More
The present study examined the roles of peroxisome proliferator-activated receptors (PPAR) in activation of hepatic stellate cells (HSC), a pivotal event in liver fibrogenesis. RNase protection assay detected mRNA for PPARgamma1 but not that for the adipocyte-specific gamma2 isoform in HSC isolated from sham-operated rats, whereas the transcripts for(More)
BACKGROUND & AIMS Myofibroblast transdifferentiation generates hepatic myofibroblasts, which promote liver fibrogenesis. The peroxisome proliferator-activated receptor gamma (PPARgamma) is a negative regulator of this process. We investigated epigenetic regulation of PPARgamma and myofibroblast transdifferentiation. METHODS Chromatin immunoprecipitation(More)
Hepatic stellate cells (HSC) undergo transdifferentiation (activation) from lipid-storing pericytes to myofibroblastic cells to participate in liver fibrogenesis. Our recent work demonstrates that depletion of peroxisome proliferator-activated receptor gamma (PPARgamma) constitutes one of the key molecular events for HSC activation and that ectopic(More)
To determine if alcoholic liver fibrogenesis is exacerbated by dietary iron supplementation, carbonyl iron (0.25% wt/vol) was intragastrically infused with or without ethanol to rats for 16 wk. Carbonyl iron had no effect on blood alcohol concentration, hepatic biochemical measurements, or liver histology in control animals. In both ethanol-fed and control(More)
UNLABELLED The translocation of bacteria and bacterial products into the circulation contributes to alcoholic liver disease. Intestinal bacterial overgrowth is common in patients with alcoholic liver disease. The aims of our study were to investigate bacterial translocation, changes in the enteric microbiome, and its regulation by mucosal antimicrobial(More)
and discussion on pancreatic stellate cell research Mert Erkan, Guido Adler, Minoti V Apte, Max G Bachem, Malte Buchholz, Sönke Detlefsen, Irene Esposito, Helmut Friess, Thomas M Gress, Hans-Joerg Habisch, Rosa F Hwang, Robert Jaster, Jörg Kleeff, Günter Klöppel, Claus Kordes, Craig D Logsdon, Atsushi Masamune, Christoph W Michalski, Junseo Oh, Phoebe A(More)
Depletion of peroxisome proliferator-activated receptor gamma (PPARgamma) accompanies myofibroblastic transdifferentiation of hepatic stellate cells (HSC), the primary cellular event underlying liver fibrogenesis. The treatment of activated HSC in vitro or in vivo with synthetic PPARgamma ligands suppresses the fibrogenic activity of HSC. However, it is(More)
Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl(4)) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these(More)
The mechanisms that allow the body to sense iron levels in order to maintain iron homeostasis are unknown. Patients with the most common form of hereditary iron overload have mutations in the hereditary hemochromatosis protein HFE. They have lower levels of hepcidin than unaffected individuals. Hepcidin, a hepatic peptide hormone, negatively regulates iron(More)
Liver-specific and non-liver-specific methionine adenosyltransferase (MAT) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (SAM). We previously showed that MAT2A expression was associated with more rapid cell growth. Changes in MAT expression have not been examined in animal models of alcoholic(More)