Hidehiko Shogomori

Learn More
Eukaryotic cell membranes contain microdomains called lipid rafts, which are cholesterol-rich domains in which lipid acyl chains are tightly packed and highly extended. A variety of proteins associate preferentially with rafts, and this raft association is important in a wide range of functions. A powerful and widely-used method for studying lipid rafts(More)
Some transmembrane proteins must associate with lipid rafts to function. However, even if acylated, transmembrane proteins should not pack well with ordered raft lipids, and raft targeting is puzzling. Acylation is necessary for raft targeting of linker for activation of T cells (LAT). To determine whether an acylated transmembrane domain is sufficient, we(More)
Sphingolipid/cholesterol-rich rafts are membrane domains thought to exist in the liquid-ordered state. To understand the rules governing the association of proteins with rafts, the behavior of a model membrane-inserted hydrophobic polypeptide (LW peptide, acetyl-K(2)W(2)L(8)AL(8)W(2)K(2)-amide) was examined. The distribution of LW peptide between coexisting(More)
Sphingomyelin (SM) is a reservoir of signaling lipids and forms specific lipid domains in biomembranes together with cholesterol. In this study, atomic force microscopy (AFM) and force measurement were applied to investigate the interaction of SM-binding protein toxin, lysenin, with N-palmitoyl-D-erythro-sphingosylphosphorylcholine (palmitoyl sphingomyelin,(More)
Sphingomyelin is a major sphingolipid in mammalian cells. Recent results indicate that sphingomyelin is a reservoir of lipid second messengers, ceramide and sphingosine-1-phosphate. Sphingomyelin is also a major component of sphingolipid and cholesterol-rich membrane domains (lipid rafts). Lysenin is a pore-forming toxin that specifically binds(More)
  • 1