Hideaki Tagami

Learn More
Deposition of the major histone H3 (H3.1) is coupled to DNA synthesis during DNA replication and possibly DNA repair, whereas histone variant H3.3 serves as the replacement variant for the DNA-synthesis-independent deposition pathway. To address how histones H3.1 and H3.3 are deposited into chromatin through distinct pathways, we have purified deposition(More)
The histone H3 variant CenH3, called CENP-A in humans, is central in centromeric chromatin to ensure proper chromosome segregation. In the absence of an underlying DNA sequence, it is still unclear how CENP-A deposition at centromeres is determined. Here, we purified non-nucleosomal CENP-A complexes to identify direct CENP-A partners involved in such a(More)
Trimethylation of lysine 9 in histone H3 (H3K9me3) enrichment is a characteristic of pericentric heterochromatin. The hypothesis of a stepwise mechanism to establish and maintain this mark during DNA replication suggests that newly synthesized histone H3 goes through an intermediate methylation state to become a substrate for the histone methyltransferase(More)
Insulators can block an enhancer of one gene from activating a promoter on another nearby gene. Almost all described vertebrate insulators require binding of the regulatory protein CTCF for their activity. We show that CTCF copurifies with the nucleolar protein nucleophosmin and both are present at insulator sites in vivo. Furthermore, exogenous insulator(More)
To investigate how the complex organization of heterochromatin is reproduced at each replication cycle, we examined the fate of HP1-rich pericentric domains in mouse cells. We find that replication occurs mainly at the surface of these domains where both PCNA and chromatin assembly factor 1 (CAF-1) are located. Pulse-chase experiments combined with(More)
DNA damage results in activation or suppression of transcription of a large number of genes. Transcriptional activation has been well characterized in the context of sequence-specific DNA-bound activators, whereas mechanisms of transcriptional suppression are largely unexplored. We show here that DNA damage rapidly reduces histone H3 Threonine 11 (T11)(More)
Rapid turnover of the tumor suppressor protein p53 requires the MDM2 ubiquitin ligase, and both interact with p300-CREB-binding protein transcriptional coactivator proteins. p53 is stabilized by the binding of p300 to the oncoprotein E1A, suggesting that p300 regulates p53 degradation. Purified p300 exhibited intrinsic ubiquitin ligase activity that was(More)
Glucose stimulates the expression of ptsG encoding the major glucose transporter in Escherichia coli. We isolated Tn 10 insertion mutations that confer constitutive expression of ptsG. The mutated gene was identified as mlc, encoding a protein that is known to be a repressor for transcription of several genes involved in carbohydrate utilization. Expression(More)
The HIV-1 transactivator protein, Tat, is an atypical transcriptional activator that functions through binding, not to DNA, but to a short leader RNA, TAR. Although details of its functional mechanism are still unknown, emerging findings suggest that Tat serves primarily to adapt co-activator complexes such as p300, PCAF and P-TEFb to the HIV-1 long(More)
BACKGROUND The pts operon of Escherichia coli consists of three genes ptsH, ptsI and crr, each encoding for central components of the phosphoenolpyruvate: carbohydrate phosphotransferase system, HPr, enzyme I and IIAGlc, respectively. Transcription of the pts operon is stimulated when glucose is present in the culture medium. One of the two major promoters,(More)