Learn More
A numerical investigation was carried out into the feasibility of deriving the aerosol size distribution from aerosol volume extinction and backscattering coefficient measurements by a multiwavelength laser radar. This study employs the regularization method for matrix inversion with the first-order B-spline function as basis functions to approximate the(More)
The use of assimilation tools for satellite validation requires true estimates of the accuracy of the reference data. Since its inception, the Network for Detection of Stratospheric Change (NDSC) has provided systematic lidar measurements of ozone and temperature at several places around the world that are well adapted for satellite validations. Regular(More)
We discuss the quality of the two available SCIAMACHY limb ozone profile products. They were retrieved with the University of Bremen IFE's algorithm version 1.61 (hereafter IFE), and the official ESA offline algorithm (hereafter OL) versions 2.4 and 2.5. The ozone profiles were compared to a suite of correlative measurements from ground-5 based lidar and(More)
An intercomparison of ozone differential absorption lidar algorithms was performed in 1996 within the framework of the Network for the Detection of Stratospheric Changes (NDSC) lidar working group. The objective of this research was mainly to test the differentiating techniques used by the various lidar teams involved in the NDSC for the calculation of the(More)
Recently, a data processing and retrieval algorithm (version 2) for ozone, aerosol, and temperature lidar measurements was developed for an ozone lidar system at the National Institute for Environmental Studies (NIES) in Tsukuba (36 degrees N,140 degrees E), Japan. A method for obtaining the aerosol boundary altitude and the aerosol(More)
We present a three-wavelength dual differential absorption lidar (dual-DIAL) method with which one can obtain an accurate stratospheric ozone profile in the presence of volcanic aerosols. Results of theoretical analysis and comparisons with conventional DIAL and backscatter correction methods show that the three-wavelength dual-DIAL method greatly reduces(More)