Learn More
Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In(More)
The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the(More)
In all multicellular organisms growth and morphogenesis must be coordinated, but for higher plants, this is of particular importance because the timing of organogenesis is not fixed but occurs in response to environmental constraints. One particularly dramatic developmental juncture is the response of dicotyledonous seedlings to light. The det3 mutant of(More)
The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we(More)
To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC The amino acid sequence shared more(More)
To understand the subcellular roles and the regulation of vacuolar H+-ATPases, we have begun to identify the genes encoding the major subunits and to determine their patterns of expression in Arabidopsis thaliana. Two distinct cDNAs (AVA-P1 and AVA-P2) and one genomic sequence (AVA-P3) encoding the 16 kDa subunit have been isolated. The 16 kDa proteolipid(More)
To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long(More)
A combined bioinformatic and experimental approach is being used to uncover the functions of a novel family of cation/H(+) exchanger (CHX) genes in plants using Arabidopsis as a model. The predicted protein (85-95 kD) of 28 AtCHX genes after revision consists of an amino-terminal domain with 10 to 12 transmembrane spans (approximately 440 residues) and a(More)
All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation-proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant(More)
Guard cell movement is induced by environmental and hormonal signals that cause changes in turgor through changes in uptake or release of solutes and water. Several transporters mediating these fluxes at the plasma membrane have been characterized; however, less is known about transport at endomembranes. CHX20, a member of a poorly understood cation/H+(More)