Learn More
The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a(More)
Protein kinases phosphorylate substrates in the context of specific phosphorylation site sequence motifs. The knowledge of the specific sequences that are recognized by kinases is useful for mapping sites of phosphorylation in protein substrates and facilitates the generation of model substrates to monitor kinase activity. Here, we have adapted a positional(More)
Mutations in PTEN-induced kinase 1 (PINK1) gene cause PARK6 familial Parkinsonism. To decipher the role of PINK1 in pathogenesis of Parkinson's disease (PD), researchers need to identify protein substrates of PINK1 kinase activity that govern neuronal survival, and establish whether aberrant regulation and inactivation of PINK1 contribute to both familial(More)
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological(More)
Protein kinases and phosphatases are enzymes catalysing the transfer of phosphate between their substrates. A protein kinase catalyses the transfer of γ-phosphate from ATP (or GTP) to its protein substrates while a protein phosphatase catalyses the transfer of the phosphate from a phospho-protein to a water molecule. Even though both groups of enzymes are(More)
Genetic variations of leucine-rich repeat kinase 2 (LRRK2) are the major cause of dominantly inherited Parkinson disease (PD). LRRK2 protein contains seven predicted domains: a tandem Ras-like GTPase (ROC) domain and C-terminal of Roc (COR) domain, a protein kinase domain, and four repeat domains. PD-causative variations arise in all domains, suggesting(More)
Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we(More)
The tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10) is a novel phosphatase displaying both protein and lipid phosphatase activities. In the central nervous system, PTEN plays an important role in the regulation of cell growth, differentiation and death. The tumor suppressor function of PTEN is attributed to its phospholipid(More)
BACKGROUND Src-family kinases (SFKs) are involved in neuronal survival and their aberrant regulation contributes to neuronal death. However, how they control neuronal survival and death remains unclear. OBJECTIVE To define the effect of inhibition of Src activity and expression on neuronal survival. RESULTS In agreement with our previous findings, we(More)
Parkinson's disease is the second most common neurodegenerative disorder affecting 40,000 Australians. Patients of Parkinson's disease develop symptoms that impair their control of bodily movement including bradykinesia, rigidity and resting tremor. Post-mortem examination of the brains of Parkinson's disease patients shows that pathology of the disease is(More)