Hesham M. El-Shewy

Learn More
Insulin-like growth factor types 1 and 2 (IGF-1; IGF-2) and insulin-like peptides are all members of the insulin superfamily of peptide hormones but bind to several distinct classes of membrane receptor. Like the insulin receptor, the IGF-1 receptor is a heterotetrameric receptor tyrosine kinase, whereas the IGF-2/ mannose 6-phosphate receptor is a single(More)
The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling,(More)
The insulin-like growth factor type 2/mannose-6-phosphate (IGF-2/M6P) receptor is a multifunctional single transmembrane glycoprotein that is known to regulate diverse biological functions. It is composed of a large extracytoplasmic domain, a single transmembrane region and a short cytoplasmic tail that lacks intrinsic catalytic activity. The receptor(More)
Heptahelical G protein-coupled receptors employ several mechanisms to activate the ERK1/2 cascade and control gene transcription. Previous work with the angiotensin AT1a receptor has shown that G(q/11) activation leads to a rapid and transient rise in ERK1/2 activity, whereas beta-arrestin binding supports sustained ERK1/2 activation by scaffolding a(More)
The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein(More)
Diverse extracellular stimuli activate the ERK1/2 MAPK cascade by transactivating epidermal growth factor (EGF) receptors. Here, we have examined the role of EGF receptors in IGF-I-stimulated ERK1/2 activation in several cultured cell lines. In human embryonic kidney 293 cells, IGF-I triggered proteolysis of heparin binding (HB)-EGF, increased tyrosine(More)
The mechanisms by which sphingosine kinase-1 (SK-1)/sphingosine 1-phosphate (S1P) activation contributes to imatinib resistance in chronic myeloid leukemia (CML) are unknown. We show herein that increased SK-1/S1P enhances Bcr-Abl1 protein stability, through inhibition of its proteasomal degradation in imatinib-resistant K562/IMA-3 and LAMA-4/IMA human CML(More)
Although several studies have shown that a subset of insulin-like growth factor (IGF) signals require the activation of heterotrimeric G proteins, the molecular mechanisms underlying IGF-stimulated G protein signaling remain poorly understood. Here, we have studied the mechanism by which endogenous IGF receptors activate the ERK1/2 mitogen-activated protein(More)
This study is designed to investigate whether substrate preference in the myocardium during the neonatal period and hypoxia-induced stress is controlled intracellularly or by extracellular substrate availability. To determine this, the effect of exogenous L-carnitine on the regulation of carbohydrate and fatty acid metabolism was determined during cardiac(More)
The pro-fibrotic connective tissue growth factor (CTGF) has been linked to the development and progression of diabetic vascular and renal disease. We recently reported that low-density lipoproteins (LDL) induced expression of CTGF in aortic endothelial cells. However, the molecular mechanisms are not fully defined. Here, we have studied the mechanism by(More)