Learn More
The aim of the present study was to define the morphology and the crystallographic and chemical composition of otoconia in different regions of the inner ear in Pleurodeles waltl (urodele amphibian). The inner ear of adults was microdissected and otoconia were analyzed by scanning electron microscopy (SEM), X-ray diffraction, energy dispersive X-ray (EDX)(More)
The aim of this study is to determine the stages of appearance, morphology, crystallographic structure and chemical composition of otoconia during the inner ear development of an urodele amphibian, Pleurodeles waltl. The first otoconia are detected in the otocyst. Near hatching, calcitic otoconia are polyhedral in the saccule and cylindrical in the utricle.(More)
Anomalie m.p. is a spontaneous and heritable hindlimb abnormality described earlier. Twenty years later, Pleurodeles waltl larvae from the strain bearing anomalie m.p. and reared at room temperature or at 30 degrees C, expressed abnormalities (ectrodactylia, hemimelia, ectromelia). A morphological study of all the hindlimbs and an analysis of the hindlimb(More)
In vertebrates, only few experiments have been performed in microgravity to study the embryonic development from fertilization. To date, these concern only amphibian and fish. We report here a study on the embryonic development of Pleurodeles waltl (urodele amphibian) eggs oviposited in microgravity. The experiment was performed twice on board the Mir space(More)
This is a histological study of the human temporo-mandibular joint and its surrounding muscles. Using a microscopic study of serial sections from anatomical specimens from six subjects, the detailed anatomy of the joint is presented with particular regard to the histology. This study has allowed, in particular, the description of the ligaments and capsule(More)
The FERTILE experiment was twice performed onboard the Mir space station during the Cassiopée and Pégase French space missions. The goal was to analyze the effects of microgravity on fertilization and embryonic development, and then on further development on the ground in the amphibian Pleurodeles waltl. The present paper reports development that occurred(More)
In lower vertebrates, gravity deprivation by orbital flights modifies the vestibuloocular reflex. Using the amphibian Xenopus laevis, the experiments should clarify to which extent macular structures of the labyrinth are responsible for these modifications. In particular, the shape of otoconia and number and size of sensory macular cells expressing(More)
  • 1