Learn More
Kheper is a novel member of the ZFH (zinc-finger and homeodomain protein)/deltaEF1 family in zebrafish. kheper transcripts are first detected in the epiblast of the dorsal blastoderm margin at the early gastrula stage and kheper is expressed in nearly all the neuroectoderm at later stages. kheper expression was expanded in noggin RNA-injected embryos and(More)
The bone morphogenetic protein (BMP) signaling pathway regulates multiple developmental and homeostatic processes. Mutations in the pathway can cause a variety of somatic and hereditary disorders in humans. Multiple levels of regulation, including extracellular regulation, ensure proper spatiotemporal control of BMP signaling in the right cellular context.(More)
Metazoan development proceeds primarily through the regulated expression of genes encoding transcription factors and components of cell signaling pathways. One way to decipher the complex developmental programs is to assemble the underlying gene regulatory networks by dissecting the cis-regulatory modules that direct temporal-spatial expression of(More)
The TALE homeodomain-containing PBC and MEIS proteins play multiple roles during metazoan development. Mutations in these proteins can cause various disorders, including cancer. In this study, we examined the roles of MEIS proteins in mesoderm development in C. elegans using the postembryonic mesodermal M lineage as a model system. We found that the MEIS(More)
The proper formation and function of an organ is dependent on the specification and integration of multiple cell types and tissues. An example of this is the Caenorhabditis elegans hermaphrodite egg-laying system, which requires coordination between the vulva, uterus, neurons, and musculature. While the genetic constituents of the first three components(More)
The subdivision of mesodermal cells into muscle and non-muscle cells is crucial to animal development. In the C. elegans postembryonic mesoderm, this subdivision is a result of an asymmetric cell division that leads to the formation of striated body wall muscles and non-muscle coelomocytes. Here we report that the Six homeodomain protein CEH-34 and its(More)
Forkhead transcription factors play crucial and diverse roles in mesoderm development. In particular, FoxF and FoxC genes are, respectively, involved in the development of visceral/splanchnic mesoderm and non-visceral mesoderm in coelomate animals. Here, we show at single-cell resolution that, in the pseudocoelomate nematode C. elegans, the single FoxF/FoxC(More)
The deleted in colorectal cancer (DCC) homolog neogenin functions in both netrin- and repulsive guidance molecule (RGM)-mediated axon guidance and in bone morphogenetic protein (BMP) signaling. How neogenin functions in mediating BMP signaling is not well understood. We show that the sole C. elegans DCC/neogenin homolog UNC-40 positively modulates a(More)
The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which(More)
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases.(More)