Hernando Curtidor

Learn More
The specific function of putative cut2 protein (or CFP25), encoded by the Rv2301 gene from Mycobacterium tuberculosis H37Rv, has not been identified yet. The aim of this study was to assess some of CFP25 characteristics and its possible biological role in Mycobacterium tuberculosis H37Rv invasion process to target cells. Molecular assays indicated that the(More)
BACKGROUND Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments within rhoptry neck or bulb. This distribution is associated with these proteins' role in tight junction (TJ) and parasitophorous vacuole (PV)(More)
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by(More)
Plasmodium vivax Duffy Binding Protein (Pv-DBP) is essential during merozoite invasion of reticulocytes. Reticulocyte binding region identification is important for understanding Pv-DBP reticulocyte recognition. Fifty 20 mer non-overlapping peptides, spanning Pv-DBP sequences, were tested in erythrocyte and reticulocyte binding assays. Ten HARBPs, mainly(More)
Plasmodium vivax merozoite preferentially invades reticulocytes probably using PvRBP-1 as ligand. One hundred and ninety-five, 15-mer peptides has been synthesised from PvRBP-1 sequence; tested in reticulocyte- or erythrocyte-binding assays. Twenty-five peptides (K(d)=76-380 nM) specifically defined four reticulocyte-binding regions. It has been reported(More)
Rhoptries are specialized secretory organelles found in all members of the genus Plasmodium whose proteins have been considered as promising vaccine candidates due to their involvement in cell invasion and the formation of the parasitophorous vacuole (PV). The Plasmodium falciparum Pf34 protein was recently identified as a rhoptry-neck protein located in(More)
Plasmodium falciparum (Pf) malaria causes 200 million cases worldwide, 8 million being severe and complicated leading to ∼1 million deaths and ∼100,000 abortions annually. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) has been implicated in cytoadherence and infected erythrocyte rosette formation, associated with cerebral malaria;(More)
Plasmodium falciparum malaria parasite invasion of erythrocytes is an essential step in host infection and the proteins involved in such invasion are the main target in developing an antimalarial vaccine. Secretory organelle-derived proteins (micronemal AMA1 protein and the RON2, 4, and 5 rhoptry neck proteins) have been recently described as components of(More)
Invasion of red blood cells (RBCs) by the Plasmodium falciparum malaria merozoite is mediated by parasite surface molecules and proteins contained within apical organelles that are capable of recognizing receptors on the membrane of RBCs. The identification and characterization of these P. falciparum invasion-associated proteins is the first step for(More)
The sporozoite microneme proteins essential for cell traversal, SPECT-1 and SPECT-2, are considered attractive pre-erythrocytic immune targets due to the key role they play in crossing of the malaria parasite across the dermis and the liver sinusoidal wall, prior to invasion of hepatocytes. In this study, the sequences of SPECT-1 and SPECT-2 were mapped(More)