Hernando Curtidor

Learn More
The specific function of putative cut2 protein (or CFP25), encoded by the Rv2301 gene from Mycobacterium tuberculosis H37Rv, has not been identified yet. The aim of this study was to assess some of CFP25 characteristics and its possible biological role in Mycobacterium tuberculosis H37Rv invasion process to target cells. Molecular assays indicated that the(More)
BACKGROUND Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments within rhoptry neck or bulb. This distribution is associated with these proteins' role in tight junction (TJ) and parasitophorous vacuole (PV)(More)
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by(More)
Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial(More)
Plasmodium vivax merozoite preferentially invades reticulocytes probably using PvRBP-1 as ligand. One hundred and ninety-five, 15-mer peptides has been synthesised from PvRBP-1 sequence; tested in reticulocyte- or erythrocyte-binding assays. Twenty-five peptides (K(d)=76-380 nM) specifically defined four reticulocyte-binding regions. It has been reported(More)
Plasmodium vivax Duffy Binding Protein (Pv-DBP) is essential during merozoite invasion of reticulocytes. Reticulocyte binding region identification is important for understanding Pv-DBP reticulocyte recognition. Fifty 20 mer non-overlapping peptides, spanning Pv-DBP sequences, were tested in erythrocyte and reticulocyte binding assays. Ten HARBPs, mainly(More)
Invasion of red blood cells (RBCs) by the Plasmodium falciparum malaria merozoite is mediated by parasite surface molecules and proteins contained within apical organelles that are capable of recognizing receptors on the membrane of RBCs. The identification and characterization of these P. falciparum invasion-associated proteins is the first step for(More)
Rhoptries are specialized secretory organelles found in all members of the genus Plasmodium whose proteins have been considered as promising vaccine candidates due to their involvement in cell invasion and the formation of the parasitophorous vacuole (PV). The Plasmodium falciparum Pf34 protein was recently identified as a rhoptry-neck protein located in(More)
Plasmodium falciparum (Pf) malaria causes 200 million cases worldwide, 8 million being severe and complicated leading to ∼1 million deaths and ∼100,000 abortions annually. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) has been implicated in cytoadherence and infected erythrocyte rosette formation, associated with cerebral malaria;(More)
This work shows that Plasmodium falciparum merozoite surface protein-6 (MSP-6) peptides specifically bind to membrane surface receptor on human erythrocytes. Three high activity binding peptides (HABPs) were found: peptides 31175 (41MYNNDKILSKNEVDTNIESN60) and 31178 (101YDIQATYQFPSTSGGNNVIP120) in the amino terminal region and 31191(More)