Hernan G. Arango

Learn More
Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following(More)
We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The(More)
[1] A coastal ocean forecasting system was developed for the Long-term Ecosystem Observatory (LEO) on New Jersey's inner shelf. The forecast system comprised an ocean model, the Regional Ocean Modeling System, forced by a high-resolution atmospheric forecast, with assimilation of ocean data from ships and coastal radar systems. The forecasts were used to(More)
Adjoint sensitivity analysis is used to study the New York Bight circulation for three idealized situations: an unforced buoyant river plume, and upwelling and downwelling wind forcing. A derivation of adjoint sensitivity is presented that clarifies how the method simultaneously addresses initial, boundary, and forcing sensitivities. Considerations of(More)
Four-dimensional variational data assimilation (4DVAR) in the Regional Ocean Modeling System (ROMS) is used to produce a best-estimate analysis of ocean circulation in the New York Bight during spring 2006 by assimilating observations collected by a variety of instruments during an intensive field program. An incremental approach is applied in an overlapped(More)
Keywords: Residence time Estuary Three-dimensional model Hudson river estuary ROMS Composite grid a b s t r a c t We investigate the processes that influence residence time in a partially mixed estuary using a three-dimensional circulation model. The complex geometry of the study region is not optimal for a structured grid model and so we developed a new(More)
The processes of wetting and drying have many important physical and biological impacts on shallow water systems. Inundation and dewatering effects on coastal mud flats and beaches occur on various time scales ranging from storm surge, periodic rise and fall of the tide, to infragravity wave motions. To correctly simulate these physical processes with a(More)
  • 1