Hermann Scharfetter

Learn More
We evaluated analytically and experimentally the performance of a planar gradiometer as a sensing element in a system for magnetic induction tomography. A system using an excitation coil and a planar gradiometer was compared against a system with two coils. We constructed one excitation coil, two different sensing elements and a high-resolution phase(More)
The use of bioelectrical impedance analysis (BIA) is widespread both in healthy subjects and patients, but suffers from a lack of standardized method and quality control procedures. BIA allows the determination of the fat-free mass (FFM) and total body water (TBW) in subjects without significant fluid and electrolyte abnormalities, when using appropriate(More)
We studied the synchronization of heart rate, blood pressure and respiration in the sympathetic and parasympathetic branches of the autonomic nervous system during a cancellation test of attention and during mental arithmetic tasks. The synchronization was quantified by the index γ, which has been adopted from the analysis of weakly coupled chaotic(More)
Magnetic induction tomography (MIT) is a contactless method for mapping the electrical conductivity of tissue by measuring the perturbation of an alternating magnetic field with appropriate receiver coils. Reconstruction algorithms so far suggested for biomedical applications are based on weighted backprojection, hence requiring tube-shaped zones of(More)
Diffuse optical tomography is a functional imaging technique based on propagation and absorption of light in biological tissues. We investigate the fast solution of the governing partial differential equations and the nonlinear inverse reconstruction problem on graphics hardware. In particular, we discuss the discretization by finite element methods, the(More)
Magnetic induction spectroscopy (MIS) aims at the contactless measurement of the passive electrical properties (PEP) sigma, epsilon, and mu of biological tissues via magnetic fields at multiple frequencies. Whereas previous publications focus on either the conductive or the magnetic aspect of inductive measurements, this article provides a synthesis of both(More)
Magnetic induction tomography (MIT) is a low-resolution imaging modality which aims at the three-dimensional (3D) reconstruction of the electrical conductivity in objects from alternating magnetic fields. In MIT systems the magnetic field perturbations to be detected are very small when compared to the excitation field (ppm range). The voltage which is(More)
Fluorescence tomography is a diffusion limited imaging modality which seeks to reconstruct the distribution of fluorescent dyes inside a sample from light measurements on the boundary. Using common inversion methods with L 2 penalties typically leads to smooth reconstructions which degrades the obtainable resolution. In this publication the use of total(More)
A major drawback of electrical impedance tomography is the poor quality of the conductivity images, i.e., the low spatial resolution as well as large errors in the reconstructed conductivity values. The main reason is the necessity for regularization of the ill-conditioned inverse problem which results in excessive spatial low-pass filtering. A novel(More)
Magnetic induction tomography (MIT) of biological tissue is used to reconstruct the changes in the complex conductivity distribution inside an object under investigation. The measurement principle is based on determining the perturbation DeltaB of a primary alternating magnetic field B0, which is coupled from an array of excitation coils to the object under(More)