Learn More
The use of bioelectrical impedance analysis (BIA) is widespread both in healthy subjects and patients, but suffers from a lack of standardized method and quality control procedures. BIA allows the determination of the fat-free mass (FFM) and total body water (TBW) in subjects without significant fluid and electrolyte abnormalities, when using appropriate(More)
We have developed a novel model for the simulation of artefacts which are produced by stray capacitance during bioimpedance spectroscopy. We focused on whole body and segmental measurements in the frequency range 5-1000 kHz. The current source was assumed to by asymmetric with respect to ground as is the case for many commercial devices. We considered the(More)
Magnetic induction tomography (MIT) is a contactless method for mapping the electrical conductivity of tissue. MIT is based on the perturbation of an alternating magnetic field by a conducting object. The perturbation is detected by a voltage change in a receivercoil. At physiologically interesting frequencies (10 kHz-10 MHz) and conductivities (< 2 S(More)
We evaluated analytically and experimentally the performance of a planar gradiometer as a sensing element in a system for magnetic induction tomography. A system using an excitation coil and a planar gradiometer was compared against a system with two coils. We constructed one excitation coil, two different sensing elements and a high-resolution phase(More)
BIA is easy, non-invasive, relatively inexpensive and can be performed in almost any subject because it is portable. Part II of these ESPEN guidelines reports results for fat-free mass (FFM), body fat (BF), body cell mass (BCM), total body water (TBW), extracellular water (ECW) and intracellular water (ICW) from various studies in healthy and ill subjects.(More)
We studied the synchronization of heart rate, blood pressure and respiration in the sympathetic and parasympathetic branches of the autonomic nervous system during a cancellation test of attention and during mental arithmetic tasks. The synchronization was quantified by the index γ, which has been adopted from the analysis of weakly coupled chaotic(More)
The detection and continuous monitoring of brain oedema is of particular interest in clinical applications because existing methods (invasive measurement of the intracranial pressure) may cause considerable distress for the patients. A new non-invasive method for continuous monitoring of an oedema promises the use of multi-frequency magnetic induction(More)
Magnetic induction tomography (MIT) of biological tissue is used to reconstruct the changes in the complex conductivity distribution inside an object under investigation. The measurement principle is based on determining the perturbation DeltaB of a primary alternating magnetic field B0, which is coupled from an array of excitation coils to the object under(More)
Magnetic induction tomography (MIT) is an imaging modality that aims at mapping the distribution of the electrical conductivity inside the body. Eddy currents are induced in the body by magnetic induction and the resulting fields are measured by an array of receiver coils. In MIT, the location of the receivers affects the quality of the image(More)
An improved comprehensive multicompartment model for the simulation of the most important metabolic state variables in the patient during dialysis is presented. With this approach time courses of urea, creatinine, K+, Na+, Cl-, HCO3-, H+ and CO2 can be predicted. Additionally, osmotic water shifts as well as resting membrane potentials are calculated. The(More)