Hermann-Georg Holzhütter

Learn More
We are able to make reliable predictions of the efficiency with which peptides of arbitrary lengths will be transported by TAP. The pressure exerted by TAP on Ag presentation thus can be assessed by checking to what extent MHC class I (MHC-I)-presented epitopes can be discriminated from random peptides on the basis of predicted TAP transport efficiencies(More)
The dynamic behavior of metabolic networks is governed by numerous regulatory mechanisms, such as reversible phosphorylation, binding of allosteric effectors or temporal gene expression, by which the activity of the participating enzymes can be adjusted to the functional requirements of the cell. For most of the cellular enzymes, such regulatory mechanisms(More)
BACKGROUND Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. RESULTS Here, we present a computational analysis of the(More)
BACKGROUND Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance(More)
BACKGROUND One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the(More)
BACKGROUND In recent years, constrained optimization - usually referred to as flux balance analysis (FBA) - has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the(More)
Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions.(More)
Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine.(More)
All cellular functions are ultimately linked to the metabolism which constitutes a highly branched network of thousands of enzyme-catalyzed chemical reactions and carrier-mediated transport processes. Depending on the prevailing functions (e.g. detoxification of a toxin or accumulation of biomass) the distribution of fluxes in the metabolic network may vary(More)
The search for new drug targets for antibiotics against Plasmodium falciparum, a major cause of human deaths, is a pressing scientific issue, as multiple resistance strains spread rapidly. Metabolic network-based analyses may help to identify those parasite’s essential enzymes whose homologous counterparts in the human host cells are either absent,(More)