Herman van Tilbeurgh

Learn More
The yeast protein Dom34 has been described to play a critical role in a newly identified mRNA decay pathway called No-Go decay. This pathway clears cells from mRNAs inducing translational stalls through endonucleolytic cleavage. Dom34 is related to the translation termination factor eRF1 and physically interacts with Hbs1, which is itself related to eRF3.(More)
The three-dimensional structure of the lipase-procolipase complex, co-crystallized with mixed micelles of phosphatidylcholine and bile salt, has been determined at 3 A resolution by X-ray crystallography. The lid, a surface helix covering the catalytic triad of lipase, adopts a totally different conformation which allows phospholipid to bind to the enzyme's(More)
Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA,(More)
Naf1 is an essential protein involved in the maturation of box H/ACA ribonucleoproteins, a group of particles required for ribosome biogenesis, modification of spliceosomal small nuclear RNAs and telomere synthesis. Naf1 participates in the assembly of the RNP at transcription sites and in the nuclear trafficking of the complex. The crystal structure of a(More)
The Kae1 (Kinase-associated endopeptidase 1) protein is a member of the recently identified transcription complex EKC and telomeres maintenance complex KEOPS in yeast. Kae1 homologues are encoded by all sequenced genomes in the three domains of life. Although annotated as putative endopeptidases, the actual functions of these universal proteins are unknown.(More)
The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that(More)
BACKGROUND Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of(More)
Site-specific substitutions of arginine for lysine in the thermostable D-xylose isomerase (XI) from Actinoplanes missouriensis are shown to impart significant heat stability enhancement in the presence of sugar substrates most probably by interfering with nonenzymatic glycation. The same substitutions are also found to increase heat stability in the absence(More)
Transformation promotes genome plasticity in bacteria via RecA-driven homologous recombination. In the gram-positive human pathogen Streptococcus pneumoniae, the transformasome a multiprotein complex, internalizes, protects, and processes transforming DNA to generate chromosomal recombinants. Double-stranded DNA is internalized as single strands, onto which(More)
Protein release factor eRF1 in Saccharomyces cerevisiae, in complex with eRF3 and GTP, is methylated on a functionally crucial Gln residue by the S-adenosylmethionine-dependent methyltransferase Ydr140w. Here we show that eRF1 methylation, in addition to these previously characterized components, requires a 15-kDa zinc-binding protein, Ynr046w.(More)