Learn More
D-serine is thought to be a glia-derived transmitter that activates N-methyl D-aspartate receptors (NMDARs) in the brain. Here, we investigate the pathways for D-serine release using primary cultures, brain slices, and in vivo microdialysis. In contrast with the notion that D-serine is exclusively released from astrocytes, we found that D-serine is released(More)
High levels of d-serine occur in the brain, challenging the notion that d-amino acids would not be present or play a role in mammals. d-serine levels in the brain are even higher than many l-amino acids, such as asparagine, valine, isoleucine, and tryptophan, among others. d-serine is synthesized by a serine racemase (SR) enzyme, which directly converts l-(More)
D-serine is a coagonist of N-methyl-D-aspartate (NMDA) receptors that occurs at high levels in the brain. Biosynthesis of D-serine is carried out by serine racemase, which converts L- to D-serine. D-serine has been demonstrated to occur in glial cells, leading to the proposal that astrocytes are the only source of D-serine. We now report significant amounts(More)
Clinical trials demonstrated that D-serine administration improves schizophrenia symptoms, raising the possibility that altered levels of endogenous D-serine may contribute to the N-methyl D-aspartate receptor hypofunction thought to play a role in the disease. We hypothesized that cerebro-spinal fluid (CSF) D-serine levels are decreased in the patients due(More)
Serine racemase is a brain-enriched enzyme that synthesizes d-serine, an endogenous modulator of the glycine site of N-methyl-d-aspartate (NMDA) receptors. We now report that serine racemase catalyzes an elimination reaction toward a nonphysiological substrate that provides a powerful tool to study its neurobiological role and will be useful to develop(More)
d-Serine is an endogenous ligand for NMDARs generated from l-serine by the enzyme serine racemase (Srr). Both neuronal and glial localizations have been reported for d-serine and Srr. 3-Phosphoglycerate dehydrogenase is an exclusively astrocytic enzyme that catalyzes the first committed step of l-serine biosynthesis. Using transgenic mice expressing(More)
The N-methyl-D-aspartate (NMDA) receptors play key roles in excitatory neurotransmission and are involved in several important processes, including learning, behavior, and synaptic plasticity. The regulation of NMDA receptor neurotransmission has been extensively studied, but many important questions still remain unsolved. One of the most debated aspects of(More)
Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-β peptide (Aβ) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate,(More)
D-serine occurs at high levels in the brain, where it is an endogenous coagonist at the "glycine site" of NMDA receptors. However, D-serine action has not been previously compared with that of endogenous glycine, and the relative importance of the two coagonists remains unclear. We now investigated the efficiencies of the two coagonists in mediating NMDA(More)
d-Serine is a brain-enriched d-amino acid that works as a transmitter-like molecule by physiologically activating NMDA receptors. Synthesis of d-serine is carried out by serine racemase (SR), a pyridoxal 5'-phosphate-dependent enzyme. In addition to carry out racemization, SR α,β-eliminates water from l- or d-serine, generating pyruvate and NH(4)(+). Here I(More)