Learn More
Mutations in superoxide dismutase 1 (SOD1) associated with familial amyotrophic lateral sclerosis induce misfolding and aggregation of the protein with the inherent propensity of mutant SOD1 to aggregate generally correlating, with a few exceptions, to the duration of illness in patients with the same mutation. One notable exception was the D101N variant,(More)
Mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis. The Cu-binding capacity of SOD1 has spawned hypotheses that implicate metal-mediated production of reactive species as a potential mechanism of toxicity. In past experiments, we have tested such hypotheses by mutating residues in SOD1 that normally coordinate the(More)
A common property of Cu/Zn superoxide dismutase 1 (SOD1), harboring mutations associated with amyotrophic lateral sclerosis, is a high propensity to misfold and form abnormal aggregates. The aggregation of mutant SOD1 has been demonstrated in vitro, with purified proteins, in mouse models, in human tissues, and in cultured cell models. In vitro translation(More)
Copper–zinc superoxide dismutase (Sod1) is an abundant intracellular enzyme that catalyzes the disproportionation of superoxide to give hydrogen peroxide and dioxygen. In most organisms, Sod1 acquires copper by a combination of two pathways, one dependent on the copper chaperone for Sod1 (CCS), and the other independent of CCS. Examples have been reported(More)
  • 1