Herman Gordon

Learn More
Congo red (CR) has been shown to inhibit the accumulation in scrapie-infected cells of prion protein (PrP) in the abnormal protease-resistant form (PrP-res). However, it was not clear if this effect was due to a direct interaction of CR with either PrP-res or its protease-sensitive precursor (PrP-sen) or to a less direct effect on living cells. Here we show(More)
Regulated trafficking of neurotransmitter receptors in excitable cells may play an important role in synaptic plasticity. In addition, agonist-induced endocytosis of nicotinic acetylcholine receptors (nAChRs) in particular might be involved in nicotine tolerance and addiction. The existing evidence concerning regulated internalization of cell-surface nAChRs(More)
During development, the neuromuscular junction passes through a stage of extensive polyinnervation followed by a period of wholesale synapse elimination. In this report we discuss mechanisms and interactions that could mediate many of the key aspects of these important developmental events. Our emphasis is on (1) establishing an overall conceptual framework(More)
The distribution of neurofilament (NF) and synaptic vesicle (SV) proteins in neurites cultured in vitro was visualized with immunocytochemical methods. NF and SV proteins were detected in neurites from both embryonic mouse spinal cord and chick ciliary ganglion neurons. NF proteins generally occupied more proximal, unbranched neurite segments while SV(More)
Myotubes of the C2 mouse muscle cell line form clusters of ACh receptors (AChRs) at apparently random sites along their length when cultured alone, and near sites of nerve-muscle contact when cocultured with neurons. We find in aneural cultures that myotubes of a C2 variant, S27, which is defective in glycosaminoglycan synthesis, express the AChR on their(More)
The neural factor agrin induces the aggregation of acetylcholine receptors (AChRs) and other synaptic molecules on cultured myotubes. This aggregating activity can be mimicked by experimental manipulations that include treatment with neuraminidase or elevated calcium. We report evidence that neuraminidase and calcium act through the agrin signal(More)
Acetylcholine receptors (AChRs) and other postsynaptic molecules cluster spontaneously on cultured C2 myotubes. The frequency of clustering is enhanced by neural agrin, neuraminidase, or calcium through a signaling pathway which includes tyrosine phosphorylation of a muscle-specific kinase (MuSK) and the AChR beta-subunit. Vicia villosa agglutinin (VVA)(More)
Proteoglycans have been implicated in the clustering of acetylcholine receptors (AChRs) on cultured myotubes and at the neuromuscular junction. We report that the presence of chondroitin sulfate is associated with the ability of cultured myotubes to form spontaneous clusters of AChRs. Three experimental manipulations of wild type C2 cells in culture were(More)
Acetylcholine receptor (AChR) clustering is an early event in neuromuscular synapse formation that is commonly studied using muscle cell culture. Motor neuron-derived agrin induces the postsynaptic tyrosine phosphorylation of both a muscle-specific kinase (MuSK) and the AChR beta-subunit. These phosphorylation events are required for AChR clustering,(More)