Learn More
In the FTA project in Nijmegen we have formalized a constructive proof of the Fundamental Theorem of Algebra. In the formal-ization, we have first defined the (constructive) algebraic hierarchy of groups, rings, fields, etcetera. For the reals we have then defined the notion of real number structure, which is basically a Cauchy complete Archimedean ordered(More)
This thesis contains an investigation of Coquand's Calculus of Constructions, a basic impredicative Type Theory. We review syntactic properties of the calculus, in particular decidability of equality and type-checking, based on the equality-as-judgement presentation. We present a set-theoretic notion of model, CC-structures, and use this to give a new(More)
In this paper we present the algebraic-cube, an extension of Barendregt's-cube with rst-and higher-order algebraic rewriting. We show that strong normalization is a modular property of all systems in the algebraic-cube, provided that the rst-order rewrite rules are non-duplicating and the higher-order rules satisfy the general schema of Jouannaud and Okada.(More)
Formal mathematics has so far not taken full advantage of ideas from collaborative tools such as wikis and distributed version control systems (DVCS). We argue that the field could profit from such tools, serving both newcomers and experts alike. We describe a preliminary system for such collaborative development based on the Git DVCS. We focus, initially,(More)