Herbert van Amerongen

Learn More
In order to maximize their use of light energy in photosynthesis, plants have molecules that act as light-harvesting antennae, which collect light quanta and deliver them to the reaction centres, where energy conversion into a chemical form takes place. The functioning of the antenna responds to the extreme changes in the intensity of sunlight encountered(More)
Under conditions of excess sunlight the efficient light-harvesting antenna found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat, a process measured as the non-photochemical quenching of chlorophyll fluorescence or qE. Although(More)
The efficiency of photosynthetic light energy conversion depends largely on the molecular architecture of the photosynthetic membranes. Linear- and circular-dichroism (LD and CD) studies have contributed significantly to our knowledge of the molecular organization of pigment systems at different levels of complexity, in pigment-protein complexes,(More)
Time-resolved fluorescence anisotropy spectroscopy has been used to study the chlorophyll a (Chl a) to Chl a excitation energy transfer in the water-soluble peridinin-chlorophyll a-protein (PCP) of the dinoflagellate Amphidinium carterae. Monomeric PCP binds eight peridinins and two Chl a. The trimeric structure of PCP, resolved at 2 A (, Science.(More)
Energy transfer from chlorophyll b (Chl b) to chlorophyll a (Chl a) in monomeric preparations of light-harvesting complex II (LHCII) from spinach was studied at 77 K using pump-probe experiments. Sub-picosecond excitation pulses centered at 650 nm were used to excite preferentially Chl b and difference absorption spectra were detected from 630 to 700 nm.(More)
This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of Arabidopsis thaliana and Alocasia wentii under(More)
A spectral and functional assignment of the xanthophylls in monomeric and trimeric light-harvesting complex II of green plants has been obtained using HPLC analysis of the pigment composition, laser-flash induced triplet-minus-singlet, fluorescence excitation, and absorption spectra. It is shown that violaxanthin is not present in monomeric preparations,(More)
Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via(More)
Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the(More)