Learn More
In order to maximize their use of light energy in photosynthesis, plants have molecules that act as light-harvesting antennae, which collect light quanta and deliver them to the reaction centres, where energy conversion into a chemical form takes place. The functioning of the antenna responds to the extreme changes in the intensity of sunlight encountered(More)
Spectral and kinetic information on energy transfer within the light-harvesting complex II (LHCII) monomer was obtained from this subpicosecond transient absorption study, by using selective excitation (663, 669, 672, 678, and 682 nm) of various Chl a absorption bands and detecting the induced changes over the entire Qy region (650-700 nm). It is shown that(More)
Under conditions of excess sunlight the efficient light-harvesting antenna found in the chloroplast membranes of plants is rapidly and reversibly switched into a photoprotected quenched state in which potentially harmful absorbed energy is dissipated as heat, a process measured as the non-photochemical quenching of chlorophyll fluorescence or qE. Although(More)
Time-resolved fluorescence anisotropy spectroscopy has been used to study the chlorophyll a (Chl a) to Chl a excitation energy transfer in the water-soluble peridinin-chlorophyll a-protein (PCP) of the dinoflagellate Amphidinium carterae. Monomeric PCP binds eight peridinins and two Chl a. The trimeric structure of PCP, resolved at 2 A (, Science.(More)
The efficiency of photosynthetic light energy conversion depends largely on the molecular architecture of the photosynthetic membranes. Linear- and circular-dichroism (LD and CD) studies have contributed significantly to our knowledge of the molecular organization of pigment systems at different levels of complexity, in pigment-protein complexes,(More)
Energy transfer from chlorophyll b (Chl b) to chlorophyll a (Chl a) in monomeric preparations of light-harvesting complex II (LHCII) from spinach was studied at 77 K using pump-probe experiments. Sub-picosecond excitation pulses centered at 650 nm were used to excite preferentially Chl b and difference absorption spectra were detected from 630 to 700 nm.(More)
A spectral and functional assignment of the xanthophylls in monomeric and trimeric light-harvesting complex II of green plants has been obtained using HPLC analysis of the pigment composition, laser-flash induced triplet-minus-singlet, fluorescence excitation, and absorption spectra. It is shown that violaxanthin is not present in monomeric preparations,(More)
The role of individual photosynthetic antenna complexes of Photosystem II (PSII) both in membrane organization and excitation energy transfer have been investigated. Thylakoid membranes from wild-type Arabidopsis thaliana, and three mutants lacking light-harvesting complexes CP24, CP26, or CP29, respectively, were studied by picosecond-fluorescence(More)
This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of Arabidopsis thaliana and Alocasia wentii under(More)
Two-photon excitation, time-resolved fluorescence microscopy was used to investigate the fluorescence quenching mechanisms in aggregates of light-harvesting chlorophyll a/b pigment protein complexes of photosystem II from green plants (LHCII). Time-gated microscopy images show the presence of large heterogeneity in fluorescence lifetimes not only for(More)