Learn More
Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca(2+)-activated K(+) channels (BK(Ca) or Slo) are subject to redox regulation.(More)
Hypoxia͞reoxygenation induces cellular injury by promoting oxi-dative stress. Reversible oxidation of methionine in proteins involving the enzyme peptide methionine sulfoxide reductase type A (MSRA) is postulated to serve a general antioxidant role. Therefore , we examined whether overexpression of MSRA protected cells from hypoxia͞reoxygenation injury.(More)
Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting(More)
BACKGROUND Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID) that affects prostaglandin production by inhibiting cyclooxygenases (COX) 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer. PRINCIPAL FINDINGS Pretreatment of human colon and lung(More)
PURPOSE Methionine-sulfoxide reductases are unique, in that their ability to repair oxidized proteins and MsrA, which reduces S-methionine sulfoxide, can protect lens cells against oxidative stress damage. To date, the roles of MsrB1, -B2 and -B3 which reduce R-methionine sulfoxide have not been established for any mammalian system. The present study was(More)
Sulindac is an FDA-approved non-steroidal anti-inflammatory drug with documented anticancer activities. Our recent studies showed that sulindac selectively enhanced the killing of cancer cells exposed to oxidizing agents via production of reactive oxygen species (ROS) resulting in mitochondrial dysfunction. This effect of sulindac and oxidative stress on(More)
The ribosomal P proteins are necessary for GTPase activity during protein synthesis. In addition to antibodies to the P proteins, sera from lupus patients contain anti-rRNA activity. To determine whether lupus antiribosomal sera recognize the region of 28S rRNA recently proposed to form part of the ribosomal GTPase center, an rRNA fragment corresponding to(More)
abstract Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca 2 ϩ-activated K ϩ channels (BK Ca or Slo) are subject to redox(More)