Herbert W. Ohm

Learn More
A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal(More)
Zhong 5 is a partial amphiploid (2n = 56) between Triticum aestivum (2n = 42) and Thinopyrum intermedium (2n = 42) carrying all the chromosomes of wheat and seven pairs of chromosomes from Th. intermedium. Following further backcrossing to wheat, six independent stable 2n = 44 lines were obtained representing 4 disomic chromosome addition lines. One(More)
 Powdery mildew caused by Blumeria graminis DC. f. sp. triticiÉm. Marchal is an important disease of wheat (Triticum aestivum L. em Thell). We report here the identification of three random amplified polymorphic DNA (RAPD) markers closely linked to a gene for resistance to B. graminis in wheat. RAPD-PCR (polymerase chain reaction) analysis was conducted(More)
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However,(More)
Twenty-three Hessian fly, Mayetiola destructor (Say), populations collected in the southeastern (Alabama and Mississippi), midwestern (Indiana), and northwestern (Idaho and Washington) United States from 1995 to 1999 were evaluated for biotype composition based on response to Hessian fly resistance genes H3, H5, H6, and H7H8 in wheat, Triticum aestivum L.(More)
The introduction of molecular biology methodologies to plant improvement programs offers an invaluable opportunity for extensive germplasm characterization. However, the detection of adequate DNA polymorphism in self-pollinating species remains on obstacle. We have optimized a denaturing-gradient-gel electrophoresis (DGGE) system which, when used in(More)
Fusarium head blight (FHB), primarily caused by Fusarium graminearum in North America, often results in significant losses in yield and grain quality of wheat (Triticum aestivum L.). Evaluation of FHB resistance is laborious and can be affected by environmental conditions. The development of DNA markers associated with FHB quantitative trait loci (QTL) and(More)
Resistance to Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe in wheat (Triticum aestivum L.) was identified in disomic chromosome substitution and translocation lines, into which chromosome 7el2 had been introgressed from wheatgrass, Thinopyrum ponticum. In this study, two chromosome substitution lines with different origins (designated(More)
 The pyramiding of genes that confer race- or biotype-specific resistance has become increasingly attractive as a breeding strategy now that DNA-based marker-assisted selection is feasible. Our objective here was to identify DNA markers closely linked to genes in wheat (Triticum aestivum L.) that condition resistance to Hessian fly [Mayetiola destructor(More)
SUMMARY The gene-for-gene interaction triggering resistance of wheat against first-instar Hessian fly larvae utilizes specialized defence response genes not previously identified in other interactions with pests or pathogens. We characterized the expression of Hfr-3, a novel gene encoding a lectin-like protein with 68-70% identity to the wheat germ(More)