Herbert W. Behlow

  • Citations Per Year
Learn More
We report a fully electrical microcantilever device that utilizes capacitance for both actuation and detection and show that it can characterize various gases with a bare silicon microcantilever. We find the motion of the cantilever as it rings down when the oscillating force is removed, by measuring the voltage induced by the oscillating capacitance in the(More)
Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the(More)
As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament(More)
Miniaturization of devices into lab-on-chip designs is a dominating field of current scientific research. While the technology to build these devices is continuing to develop, the practical realization of such devices remain elusive, mainly due to lack of techniques that bridge the macroscopic world to the mechanical motion and/or the electronic signals(More)
Electromechanical resonators in the micro (MEMS) and nano (NEMS) regimes have emerged as promising tools for use in diverse applications such as ultrasensitive physical, chemical, and biological sensors, with detection limits as low as a single molecule. The advent of state-of-the-art micro-fabrication techniques has enabled a high throughput platform for(More)
Combinatorial synthesis and high-throughput pharmacology screening have greatly increased compound throughput in modern drug-discovery programs. For CNS drugs, it is also important to determine permeability to the blood--brain barrier. Yet, given the increased pace of discovery, it difficult to conduct this screen in a timely fashion. In this presentation,(More)
  • 1