Learn More
MOTIVATION Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. RESULTS We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical(More)
Researchers in quantitative systems biology make use of a large number of different software packages for modelling, analysis, visualization, and general data manipulation. In this paper, we describe the Systems Biology Workbench (SBW), a software framework that allows heterogeneous application components--written in diverse programming languages and(More)
BACKGROUND In synthetic biology, gene regulatory circuits are often constructed by combining smaller circuit components. Connections between components are achieved by transcription factors acting on promoters. If the individual components behave as true modules and certain module interface conditions are satisfied, the function of the composite circuits(More)
The response of biological cells to environmental change is coordinated by protein-based signaling networks. These networks are to be found in both prokaryotes and eukaryotes. In eukaryotes, the signaling networks can be highly complex, some networks comprising of 60 or more proteins. The fundamental motif that has been found in all signaling networks is(More)
BACKGROUND Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate(More)
A sensitivity analysis of general stoichiometric networks is considered. The results are presented as a generalization of Metabolic Control Analysis, which has been concerned primarily with system sensitivities at steady state. An expression for time-varying sensitivity coefficients is given and the Summation and Connectivity Theorems are generalized. The(More)
Researchers in computational biology today make use of a large number of different software packages for modeling, analysis, and data manipulation and visualization. In this paper, we describe the ERATO Systems Biology Workbench (SBW), a software framework that allows these heterogeneous application components--written in diverse programming languages and(More)
Large scale genomic studies are generating significant amounts of data on the structure of cellular networks. This is in contrast to kinetic data, which is frequently absent, unreliable or fragmentary. There is, therefore, a desire by many in the community to investigate the potential rewards of analyzing the more readily available topological data. This(More)
MOTIVATION Biochemical networks often yield interesting behavior such as switching, oscillation and chaotic dynamics. This article describes a tool that is capable of searching for bifurcation points in arbitrary ODE-based reaction networks by directing the user to regions in the parameter space, where such interesting dynamical behavior can be observed. (More)
The following examples are MIASE compliant descriptions of three simulation experiments performed on the well-known, simple Repressilator model with its rich and variable behavior. The Repressilator is a synthetic oscillating network of transcription regulators in Escherichia coli [1]. The network is composed of three repressor genes (lacI, tetR, and cI)(More)