Herbert C. Georg

  • Citations Per Year
Learn More
Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy(More)
The dipole moment (μ), linear polarizability (α), and first hyperpolarizability (β(tot)) of the asymmetric unit of L-arginine phosphate (LAP) monohydrate crystal are investigated using the supermolecule approach in combination with an iterative electrostatic polarization scheme. Environment polarization effects are attained by assuring the convergence of(More)
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in(More)
The entire ultraviolet-visible absorption spectrum of benzophenone in water is studied and compared with the same spectrum in gas phase. Five transitions are considered, and the corresponding solvatochromic shifts are obtained and compared to experiment. Using a sequential procedure of Monte Carlo simulations and quantum mechanical calculations, liquid(More)
We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by(More)
There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is(More)
A theoretical study of magnetic properties of hydrogen peroxide in water has been carried out by means of Monte Carlo simulation and quantum mechanics calculations. The solvent effects were evaluated in supermolecular structures generated by simulations in the NPT ensemble. The solute-solvent structure was analyzed in terms of radial distribution functions,(More)
A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76%(More)
The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different(More)
The sequential Monte Carlo (MC) quantum mechanics (QM) methodology, using time-dependent density-functional theory (TD-DFT), is used to study the solvatochromic shift of the n-pi* transition of trans-acrolein in water. Using structures obtained from the isothermal-isobaric Metropolis MC simulation TD-DFT calculations, within the B3LYP functional, are(More)