Learn More
According to the hygiene hypothesis, the increasing incidence of autoimmune diseases in western countries may be explained by changes in early microbial exposure, leading to altered immune maturation. We followed gut microbiome development from birth until age three in 222 infants in Northern Europe, where early-onset autoimmune diseases are common in(More)
Bacterial biofilms are organized communities of cells living in association with surfaces. The hallmark of biofilm formation is the secretion of a polymeric matrix rich in sugars and proteins in the extracellular space. In Bacillus subtilis, secretion of the exopolysaccharide (EPS) component of the extracellular matrix is genetically coupled to the(More)
UNLABELLED Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of(More)
Biofilms, surface-bound communities of microbes, are economically and medically important due to their pathogenic and obstructive properties. Among the numerous strategies to prevent bacterial adhesion and subsequent biofilm formation, surface topography was recently proposed as a highly nonspecific method that does not rely on small-molecule antibacterial(More)
Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt(More)
Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is(More)
Myxococcus xanthus is a member of the Myxococcales order within the Deltaproteobacteria subdivision. The myxobacteria reside in soil, have relatively large genomes, and display complex life cycles. Here, we report the whole-genome shotgun sequence of strain DZ2, which includes unique genes not found previously in strain DK1622.
The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is(More)
Interrogation of the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores-soluble, low molecular weight compounds-have an easily understood and measured function: acquiring iron from the environment. Bacteria engage(More)
Myxococcus xanthus is a member of the Myxococcales order within the deltaproteobacterial subdivision. Here, we report the whole-genome shotgun sequence of the type IV pilus (T4P) defective strain DZF1, which includes many genes found in strain DZ2 but absent from strain DK1622.