Henryk A. Witek

Learn More
Ammonia adsorption on single-walled carbon nanotubes (SWNTs) was studied by means of infrared spectroscopy at both cryogenic (approximately 94 K) and room (approximately 300 K) temperatures. At 94 K, vacuum-annealed SWNTs showed no detectable ammonia uptake. However, the ammonia adsorption was found to be sensitive to the functionalities and defects on the(More)
Analytical formulation of the second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding (SCC-DFTB) method is presented. To test its quality and numerical performance, the derived formalism has been coded and applied for calculation of harmonic vibrational frequencies for a set of 17 small and medium size(More)
We present a detailed study of harmonic vibrational frequencies obtained with the self-consistent charge density functional tight-binding (SCC-DFTB) method. Our testing set comprises 66 molecules and 1304 distinct vibrational modes. Harmonic vibrational frequencies are computed using an efficient analytical algorithm developed and coded by the authors. The(More)
A new perturbation approach is proposed that enhances the low-order, perturbative convergence by modifying the zeroth-order Hamiltonian in a manner that enlarges any small-energy denominators that may otherwise appear in the perturbative expansion. This intruder state avoidance (ISA) method can be used in conjunction with any perturbative approach, but is(More)
Recently developed parameters for five first-row transition-metal elements (M = Sc, Ti, Fe, Co, and Ni) in combination with H, C, N, and O as well as the same metal (M-M) for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method have been calibrated. To test their performance a couple sets of compounds have been selected(More)
The Criegee intermediates are carbonyl oxides postulated to play key roles in the reactions of ozone with unsaturated hydrocarbons; these reactions constitute an important mechanism for the removal of unsaturated hydrocarbons and for the production of OH in the atmosphere. Here, we report the transient infrared (IR) absorption spectrum of the simplest(More)
Closed-form, general formulas for the Zhang-Zhang (ZZ) polynomials for two important classes of benzenoid structures, chevrons and generalized chevrons , are formally derived. The derivations rely on a new and important theorem, which states that the ZZ polynomial of two fused parallelograms can be represented as the product of the ZZ polynomials of the two(More)
We employ a graphical proof-oriented tool, ZZDecomposer, to discover formal derivations of Zhang-Zhang (ZZ) polynomials for various families and subfamilies of benzenoid structures including tripods, zigzag-edge coronoids fused with a starphene, oblate rectangles , hexagons , , and , and multiple zigzag chains , , , , , and . Current derivations are based(More)
The self-consistent charge density-functional tight-binding (SCC-DFTB) method is employed for studying various molecular properties of small fullerenes: C(28), C(60), and C(70). The computed bond distances, vibrational infrared and Raman spectra, vibrational densities of states, and electronic densities of states are compared with experiment (where(More)