Learn More
Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning. In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs. Their average(More)
Although signaling between neurons is central to the functioning of the brain, we still do not understand how the code used in signaling depends on the properties of synaptic transmission. Theoretical analysis combined with patch clamp recordings from pairs of neocortical pyramidal neurons revealed that the rate of synaptic depression, which depends on the(More)
1. Dual voltage recordings were made from pairs of adjacent, synaptically connected thick tufted layer 5 pyramidal neurones in brain slices of young rat (14-16 days) somatosensory cortex to examine the physiological properties of unitary EPSPs. Pre- and postsynaptic neurones were filled with biocytin and examined in the light and electron microscope to(More)
A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computational model for real-time computing on time-varying input that provides an alternative to paradigms based(More)
The nature of information stemming from a single neuron and conveyed simultaneously to several hundred target neurons is not known. Triple and quadruple neuron recordings revealed that each synaptic connection established by neocortical pyramidal neurons is potentially unique. Specifically, synaptic connections onto the same morphological class differed in(More)
Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to(More)
A puzzling feature of the neocortex is the rich array of inhibitory interneurons. Multiple neuron recordings revealed numerous electrophysiological-anatomical subclasses of neocortical gamma-aminobutyric acid-ergic (GABAergic) interneurons and three types of GABAergic synapses. The type of synapse used by each interneuron to influence its neighbors follows(More)
Experience-dependent potentiation and depression of synaptic strength has been proposed to subserve learning and memory by changing the gain of signals conveyed between neurons. Here we examine synaptic plasticity between individual neocortical layer-5 pyramidal neurons. We show that an increase in the synaptic response, induced by pairing action-potential(More)
Transmission across neocortical synapses depends on the frequency of presynaptic activity (Thomson & Deuchars, 1994). Interpyramidal synapses in layer V exhibit fast depression of synaptic transmission, while other types of synapses exhibit facilitation of transmission. To study the role of dynamic synapses in network computation, we propose a unified(More)
Anatomical, electrophysiological and molecular diversity of basket cell-like interneurons in layers II-IV of rat somatosensory cortex were studied using patch-clamp electrodes filled with biocytin. This multiparametric study shows that neocortical basket cells (BCs) are composed of three distinct subclasses: classical large (LBC) and small (SBC) basket(More)