Learn More
A subpopulation of neural crest termed the cardiac neural crest is required in avian embryos to initiate reorganization of the outflow tract of the developing cardiovascular system. In mammalian embryos, it has not been previously experimentally possible to study the long-term fate of this population, although there is strong inference that a similar(More)
Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial(More)
We have established a targeted loss-of-function mutation in the RXR alpha gene in the mouse germ line that results in embryonic lethality between E13.5 and E16.5 when bred to homozygosity. The major defect responsible for lethality is hypoplastic development of the ventricular chambers of the heart, which is manifest as a grossly thinned ventricular wall(More)
During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we(More)
The neural crest is a multipotent, migratory cell population that contributes to a variety of tissues and organs during vertebrate embryogenesis. Here, we focus on the function of Msx1 and Msx2, homeobox genes implicated in several disorders affecting craniofacial development in humans. We show that Msx1/2 mutants exhibit profound deficiencies in the(More)
A sequence that confers transcriptional responsiveness to retinoic acid was identified in the promoter of the mouse retinoic acid receptor (RAR) beta gene. This response element consists of a direct repeat of the sequence GTTCAC, separated by five nucleotides. Direct binding of the RAR to this sequence was demonstrated by gel retardation and(More)
To facilitate the elucidation of the genetic events that may play an important role in the development or tumorigenesis of the prostate gland, we have generated a transgenic mouse line with prostate-specific expression of Cre recombinase. This line, named PB-Cre4, carries the Cre gene under the control of a composite promoter, ARR2PB which is a derivative(More)
Three unlinked genes encode receptors for retinoic acid (RAR alpha, -beta, and -gamma). Each gene expresses two major protein isoforms differing in the amino terminal A domain by alternative promoter use, fused to common exons encoding most of the receptor protein. The two RAR alpha transcripts (RAR alpha 1 and -alpha 2) are differentially expressed and(More)
To address the requirement for TGFbeta signaling in the formation and maintenance of the vascular matrix, we employed lineage-specific mutation of the type II TGFbeta receptor gene (Tgfbr2) in vascular smooth muscle precursors in mice. In both neural crest- and mesoderm-derived smooth muscle, absence of TGFbeta receptor function resulted in a poorly(More)
The vitamin A derivative retinoic acid (RA) and related compounds (retinoids) are utilized as signaling molecules in a diverse array of developmental and physiological regulatory processes, including many important in the developing and mature nervous system. Retinoids function by interaction with high affinity receptors of the nuclear receptor family,(More)