Learn More
Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial(More)
During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we(More)
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are the most widely studied forms of synaptic plasticity thought to underlie spatial learning and memory. We report here that RARbeta deficiency in mice virtually eliminates hippocampal CA1 LTP and LTD. It also results in substantial performance deficits in spatial learning and memory(More)
To facilitate the elucidation of the genetic events that may play an important role in the development or tumorigenesis of the prostate gland, we have generated a transgenic mouse line with prostate-specific expression of Cre recombinase. This line, named PB-Cre4, carries the Cre gene under the control of a composite promoter, ARR2PB which is a derivative(More)
The neural crest is a multipotent, migratory cell population that contributes to a variety of tissues and organs during vertebrate embryogenesis. Here, we focus on the function of Msx1 and Msx2, homeobox genes implicated in several disorders affecting craniofacial development in humans. We show that Msx1/2 mutants exhibit profound deficiencies in the(More)
Mice with targeted disruptions in retinoic acid receptor genes have been generated to assess the role of nuclear receptors as transducers of the retinoid signal during vertebrate development. Mice with mutations that disrupt all isoforms of the RARa, RARfl and RAR), genes as well as for the individual RARal, RARfl2 and RARe2 have been described. By breeding(More)
Retinoids, which are important regulators of cell growth, differentiation, and apoptosis, have been used in treatment or chemoprevention of multiple cancers including prostate cancer. To elucidate the mechanism of action of retinoids in the context of the prostate, we used the Cre-loxP system to disrupt the retinoid X receptor alpha (RXRalpha) gene(More)
Most developing structures that express the transcription factor gene AP-2a are compromised in AP-2a mutant mouse embryos. Since the cardiac neural crest population is one prominent site of AP-2a expression, and because the neural crest is known to be required for normal cardiac morphogenesis, we have investigated the involvement of AP-2a in cardiac(More)
The vitamin A derivative retinoic acid (RA) and related compounds (retinoids) are utilized as signaling molecules in a diverse array of developmental and physiological regulatory processes, including many important in the developing and mature nervous system. Retinoids function by interaction with high affinity receptors of the nuclear receptor family,(More)
Mouse embryos lacking the retinoic acid (RA) receptors RARalpha1 and RARbeta suffer from a failure to properly septate (divide) the early outflow tract of the heart into distinct aortic and pulmonary channels, a phenotype termed persistent truncus arteriosus. This phenotype is associated with a failure in the development of the cardiac neural crest cell(More)