Learn More
We investigated the effects of acute (2-h) exposure to pulsed (2-micros pulse width, 500 pulses s(-1)) and continuous wave 2450-MHz radiofrequency electromagnetic radiation on DNA strand breaks in brain cells of rat. The spatial averaged power density of the radiation was 2mW/cm2, which produced a whole-body average-specific absorption rate of 1.2W/kg.(More)
Effects of in vivo microwave exposure on DNA strand breaks, a form of DNA damage, were investigated in rat brain cells. In previous research, we have found that acute (2 hours) exposure to pulsed (2 microseconds pulses, 500 pps) 2450-MHz radiofrequency electromagnetic radiation (RFR) (power density 2 mW/cm2, average whole body specific absorption rate 1.2(More)
Levels of DNA single-strand break were assayed in brain cells from rats acutely exposed to low-intensity 2450 MHz microwaves using an alkaline microgel electrophoresis method. Immediately after 2 h of exposure to pulsed (2 microseconds width, 500 pulses/s) microwaves, no significant effect was observed, whereas a dose rate-dependent [0.6 and 1.2 W/kg whole(More)
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT,(More)
In previous research, we found that rats acutely (2 hr) exposed to a 60-Hz sinusoidal magnetic field at intensities of 0.1-0.5 millitesla (mT) showed increases in DNA single- and double-strand breaks in their brain cells. Further research showed that these effects could be blocked by pretreating the rats with the free radical scavengers melatonin and(More)
In previous research, we have found an increase in DNA single- and double-strand breaks in brain cells of rats after acute exposure (two hours) to a sinusoidal 60-Hz magnetic field. The present experiment was carried out to investigate whether treatment with melatonin and the spin-trap compound N-tert-butyl-alpha-phenylnitrone (PBN) could block the effect(More)
After 45 min of exposure to pulsed 2450 MHz microwaves (2 microseconds pulses, 500 pps, 1 mW/cm2, average whole body SAR 0.6 W/kg), rats showed retarded learning while performing in the radial-arm maze to obtain food rewards, indicating a deficit in spatial "working memory" function. This behavioral deficit was reversed by pretreatment before exposure with(More)
Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further(More)
In this paper, we describe a method for the visualization of double-strand breaks in a single electrostretched Escherichia coli DNA molecule. We also provide evidence that electrostretched or migrated DNA under neutral microgel electrophoresis conditions is made up of individual chromosomes. Using the neutral microgel electrophoresis technique, DNA(More)
Rapid cell death, as evidenced by a decrease in cell counts, was observed when molt-4-lymphoblastoid cells, a human leukemia cell line, were exposed to holotransferrin (12 microM) and dihydroartemisinin (1-200 microM). Incubation with either compound alone was significantly less effective. Significantly less cell death was observed when normal human(More)