Learn More
Secretion of the proinflammatory cytokines, interleukin (IL)-1beta and IL-18, usually requires two signals. The first, due to microbial products such as lipopolysaccharide, initiates transcription of the cytokine genes and accumulation of the precursor proteins. Cleavage and secretion of the cytokines is mediated by caspase-1, in association with an(More)
Redox (oxidation-reduction) reactions regulate signal transduction. Oxidants such as superoxide, hydrogen peroxide, hydroxyl radicals, and lipid hydroperoxides (i.e., reactive oxygen species) are now realized as signaling molecules under subtoxic conditions. Nitric oxide is also an example of a redox mediator. Reactive oxygen species induce various(More)
Low molecular weight thiol-containing compounds have an essential role in many biochemical and pharmacological reactions due to the ease with each they are oxidized, and the rapidity with which they can be regenerated. Thioredoxin and glutathione (GSH) are two of the major small molecular weight thiol-containing compounds synthesized de novo in mammalian(More)
Glutathione (GSH) is a potentially important component of antioxidant defense in the epithelial lung lining fluid. Cystic fibrosis (CF) patients have chronic inflammation in which oxidative stress can be a factor. To examine the hypothesis that the transport of GSH content was defective in CF patients, intracellular and extracellular GSH were measured by(More)
We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic(More)
Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with(More)
Glutathione (GSH) is a tripeptide composed of glutamate, cysteine, and glycine. The first and rate-limiting step in GSH synthesis is catalyzed by glutamate cysteine ligase (GCL, previously known as gamma-glutamylcysteine synthetase). GCL is a heterodimeric protein composed of catalytic (GCLC) and modifier (GCLM) subunits that are expressed from different(More)
Oxidative stress appears to play an important role in degeneration of dopaminergic neurons of the substantia nigra (SN) associated with Parkinson's disease (PD). The SN of early PD patients have dramatically decreased levels of the thiol tripeptide glutathione (GSH). GSH plays multiple roles in the nervous system both as an antioxidant and a redox(More)
Glutathione (GSH) is the most abundant antioxidant and a major detoxification agent in cells. It is synthesized through two-enzyme reaction catalyzed by glutamate cysteine ligase and glutathione synthetase, and its level is well regulated in response to redox change. Accumulating evidence suggests that GSH may play important roles in cell signaling. This(More)
A principal characteristic of redox signaling is that it involves an oxidation-reduction reaction or covalent adduct formation between the sensor signaling protein and second messenger. Non-redox signaling may involve alteration of the second messenger as in hydrolysis of GTP by G proteins, modification of the signaling protein as in farnesylation, or(More)