Learn More
In this study, a computer-based method called finite-element analysis is used to predict the forced-frequency response of the ear, with and without an ossicular replacement prosthesis (PORP 0362, Xomed Surgical Products). The method allows visualisation of the dynamical behaviour of the tympanic membrane (TM) and of the ossicles. The finite-element model is(More)
A representative finite element model of the healthy ear is developed commencing with a description of the decoupled isotropic tympanic membrane. This model was shown to vibrate in a manner similar to that found both numerically (1, 2) and experimentally (8). The introduction of a fibre system into the membrane matrix significantly altered the modes of(More)
The vibration response of the basilar membrane in the cochlea to sinusoidal excitation displays a compressive nonlinearity, conventionally described using an input-output level curve. This displays a slope of 1 dB/dB at low levels and a slope m < 1 dB/dB at higher levels. Two classes of nonlinear systems have been considered as models of this response, one(More)
A two-microphone technique was used to determine the middle ear impedance of a live subject. The procedure involved the application of standing wave tube theory and the assumption that the ear canal behaves like an homogeneous cylinder with plane acoustic wave propagation up to a certain frequency--2 kHz for the current analysis. During experimentation the(More)
  • 1