Henry H. Ong

Learn More
Human immunodeficiency virus type 1 (HIV-1) clade C causes >50% of all HIV infections worldwide, and an estimated 90% of all transmissions occur mucosally with R5 strains. A pathogenic R5 simian-human immunodeficiency virus (SHIV) encoding HIV clade C env is highly desirable to evaluate candidate AIDS vaccines in nonhuman primates. To this end, we generated(More)
Q-space imaging (QSI), a diffusion MRI technique, can provide quantitative tissue architecture information at cellular dimensions not amenable by conventional diffusion MRI. By exploiting regularities in molecular diffusion barriers, QSI can estimate the average barrier spacing such as the mean axon diameter in white matter (WM). In this work, we performed(More)
Q-space magnetic resonance imaging (QSI) can quantify white matter (WM) axonal architecture at the cellular level non-destructively, unlike histology, but currently has several limitations. First, current methodology does not differentiate between diffusing molecules occupying extra- or intra-cellular spaces (ECS and ICS, respectively). Second, accurate(More)
Magnetic resonance imaging has previously demonstrated its potential for indirectly mapping myelin density, either by relaxometric detection of myelin water or magnetization transfer. Here, we investigated whether myelin can be detected and possibly quantified directly. We identified the spectrum of myelin in the spinal cord in situ as well as in myelin(More)
Bone contains a significant fraction of water that is not detectable with ordinary Cartesian imaging sequences. The advent of ultra-short echo-time (UTE) methods has allowed the recovery of this submillisecond T(2)* water. In this work, we have developed a new three-dimensional hybrid-radial ultra-short echo-time (3D HRUTE) imaging technique based on slab(More)
Bone water (BW) plays a pivotal role in nutrient transport and conferring bone with its viscoelastic mechanical properties. BW is partitioned between the pore spaces of the Haversian and lacuno-canalicular system, and water predominantly bound to the matrix proteins (essentially collagen). The general model of BW is that the former predominantly experiences(More)
Osteomalacia is characterized by hypomineralization of the bone associated with increased water content. In this work we evaluate the hypotheses that 1) 3D solid-state magnetic resonance imaging (MRI) of (31)P (SSI-PH) and (1)H (SSI-WATER) of cortical bone can quantify the key characteristics of osteomalacia induced by low-phosphate diet; and 2) return to(More)
In osteomalacia decreased mineralization reduces the stiffness and static strength of bone. We hypothesized that hypomineralization in osteomalacic bone could be quantified by solid-state (31)P magnetic resonance imaging (SS-MRI). Hypomineralization was measured with a 3D radial imaging technique at 162 MHz (9.4T) in rabbit cortical bone of hypophosphatemic(More)
Recent studies have demonstrated the ability to detect images based on intermolecular multiple-quantum coherences (iMQCs) that correspond to flipping of two or more separated spins simultaneously, as opposed to conventional magnetic resonance where only one spin is flipped at a time. Until now, iMQC imaging has only acquired one coherence signal per pulse(More)
Recent work has shown that solid-state (1) H and (31) P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, (31) P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to(More)