Learn More
Q-space imaging (QSI), a diffusion MRI technique, can provide quantitative tissue architecture information at cellular dimensions not amenable by conventional diffusion MRI. By exploiting regularities in molecular diffusion barriers, QSI can estimate the average barrier spacing such as the mean axon diameter in white matter (WM). In this work, we performed(More)
Q-space magnetic resonance imaging (QSI) can quantify white matter (WM) axonal architecture at the cellular level non-destructively, unlike histology, but currently has several limitations. First, current methodology does not differentiate between diffusing molecules occupying extra- or intra-cellular spaces (ECS and ICS, respectively). Second, accurate(More)
Magnetic resonance imaging has previously demonstrated its potential for indirectly mapping myelin density, either by relaxometric detection of myelin water or magnetization transfer. Here, we investigated whether myelin can be detected and possibly quantified directly. We identified the spectrum of myelin in the spinal cord in situ as well as in myelin(More)
In vitro studies have been performed to demonstrate and characterize specific binding sites for synthetic GH secretagogues (sGHS) on membranes from pituitary gland and different human brain regions. A binding assay for sGHS was established using a peptidyl sGHS (Tyr-Ala-hexarelin) which had been radioiodinated to high specific activity at the Tyr residue.(More)
q-Space imaging is capable of providing quantitative geometrical information of structures at cellular resolution. However, the size of restrictions that can be probed hinges on available gradient amplitude and places very high demands on gradient performance. In this work we describe the design and construction of a small, high-amplitude (50 T/m)(More)
The study of rotational and translational diffusion requires the measurement of both T2 and apparent diffusion coefficient (ADC), quantities that are typically measured in separate experiments. The exploitation of echoes generated via multiple coherence transfer pathways offers an opportunity for measuring T2 and ADC values simultaneously in a single(More)
Recent studies have demonstrated the ability to detect images based on intermolecular multiple-quantum coherences (iMQCs) that correspond to flipping of two or more separated spins simultaneously, as opposed to conventional magnetic resonance where only one spin is flipped at a time. Until now, iMQC imaging has only acquired one coherence signal per pulse(More)
A series of 3-aryl-1,3-dihydrospiro[benzo[c]thiophene-1,4'-piperidine] derivatives was synthesized and evaluated pharmacologically for potential psychotropic activity. Potent antidepressant-like activity was noted throughout the series, as assessed by tetrabenazine (TBZ) ptosis prevention in mice and potentiation of 5-hydroxytryptophan (5-HTP) induced(More)
  • 1